Application Progress of FFR, CT-FFR and QFR in Coronary Artery Revascularization

TIAN Yang, LIU Xiaolin

China Medical Devices ›› 2025, Vol. 40 ›› Issue (3) : 164-168.

PDF(1599 KB)
PDF(1599 KB)
China Medical Devices ›› 2025, Vol. 40 ›› Issue (3) : 164-168. DOI: 10.3969/j.issn.1674-1633.20240761
REVIEW

Application Progress of FFR, CT-FFR and QFR in Coronary Artery Revascularization

  • TIAN Yang1, LIU Xiaolin1,2
Author information +
History +

Abstract

Coronary revascularization is an effective method for the treatment of coronary heart disease. Fractional flow reserve (FFR) is the gold standard for the invasive assessment of ischemia caused by coronary artery lesions. However, it requires additional guidewires and vasodilation, which limits its widespread clinical application. In recent years, new technologies such as FFR derived from coronary CT angiography (CT-FFR) and quantitative flow fraction (QFR) have developed rapidly. These technologies can further evaluate the situation of myocardial ischemia and the degree of coronary artery stenosis while avoiding the use of additional guidewires and vasodilation. This paper reviewed the principles, application values, and limitations of FFR, CT-FFR, and QFR from multiple aspects, aiming to provide a reference for clinicians to select reasonable technologies in the diagnosis and treatment of coronary heart disease.

Key words

fractional flow reserve; coronary CT angiography (CCTA); quantitative flow fraction; FFR derived from CCTA; coronary heart disease; coronary revascularization

Cite this article

Download Citations
TIAN Yang, LIU Xiaolin. Application Progress of FFR, CT-FFR and QFR in Coronary Artery Revascularization[J]. China Medical Devices, 2025, 40(3): 164-168 https://doi.org/10.3969/j.issn.1674-1633.20240761

References

[1] Taguchi E, Nakao K, Hirakawa K, et al. Accuracy and usefulness of noninvasive fractional flow reserve from computed tomographic coronary angiography: comparison with myocardial perfusion imaging, echocardiographic coronary flow reserve, and invasive fractional flow reserve[J]. Cardiovasc Interv Ther, 2017, 32(1): 66-71.
[2] Kelb?k H, H?fsten DE, K?ber L, et al. Deferred versus conventional stent implantation in patients with ST-segment elevation myocardial infarction (DANAMI 3-DEFER): an open-label, randomised controlled trial[J]. Lancet, 2016, 387(10034): 2199-2206.
[3] 《中国冠状动脉血流储备分数测定技术临床路径专家共 识》专家组. 中国冠状动脉血流储备分数测定技术临床路径 专家共识[J]. 中国介入心脏病学杂志, 2019, 27(3): 121-133.
[4] Adjedj J, De Bruyne B, Floré V, et al. Significance of intermediate values of fractional flow reserve in patients with coronary artery disease[J]. Circulation, 2016, 133(5): 502-508.
[5] Kwasiborski PJ, Czerwiński W, Kowalczyk P, et al. Influence of heart rate on FFR measurements: an experimental and clinical validation study[J]. Int J Cardiol, 2020, 317: 13-17.
[6] Ueno H, Hoshino M, Usui E, et al. Prognostic implications of fractional flow reserve and coronary flow reserve after drugeluting stent implantation[J]. Circ J, 2024, 88(6): 853-859.
[7] De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease[J]. N Engl J Med, 2012, 367(11): 991-1001.
[8] 刘华, 林芬. 血流储备分数与冠状动脉造影在冠心病经皮冠 状动脉介入术中的应用价值[J]. 医疗装备, 2024, 37(6): 75-77.
[9] 沈刚亮. FFR在冠状动脉多支血管病变PCI术中的应用价 值[A]. 中国生命关怀协会. 生命关怀与智慧康养系列学术 研讨会论文集[C]. 2024.
[10] Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemiacausing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms[J]. J Am Coll Cardiol, 2011, 58(19): 1989-1997.
[11] Min JK, Taylor CA, Achenbach S, et al. Noninvasive fractional flow reserve derived from coronary CT angiography[J]. JACC Cardiovasc Imaging, 2015, 8(10): 1209-1222.
[12] Kim KH, Doh JH, Koo BK, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve[J]. JACC Cardiovasc Interv, 2014, 7(1): 72-78.
[13] N?rgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease[J]. J Am Coll Cardiol, 2014, 63(12): 1145-1155.
[14] Zhao N, Gao Y, Xu B, et al. Effect of coronary calcification severity on measurements and diagnostic performance of CTFFR with computational fluid dynamics: results from CT-FFR China trial[J]. Front Cardiovasc Med, 2022, 8: 810625.
[15] Yang L, Wang WJ, Xu C, et al. Novel fast FFR derived from coronary CT angiography based on static first-pass algorithm: a comparison study[J]. J Geriatr Cardiol, 2023, 20(1): 40-50.
[16] Zu ZY, Xu PP, Chen Q, et al. The prognostic value of CTderived fractional flow reserve in coronary artery bypass graft: a retrospective multicenter study[J]. Eur Radiol, 2022, 33(5): 3029-3040.
[17] 欧阳丽娜, 王晶晶, 张怀, 等. CT血流储备分数联合斑块特 征对主要不良心脏事件的预测价值[J]. 中国医学影像学杂 志, 2023, 31(6): 592-597.
Ouyang LN, Wang JJ, Zhang H, et al. Prediction of coronary CTA-derived fractional flow reserve and atherosclerosis plaque characteristics for major adverse cardiac events[J]. Chin J Med Imaging, 2023, 31(6): 592-597.
[18] 黄书苑, 杨宝珠, 于鑫鑫, 等. CT血流储备分数与冠状动脉 周围脂肪衰减指数联合临床及冠状动脉CT血管造影特征预 测主动脉瓣置换术术后不良心血管事件[J]. 中国医学影像技 术, 2024, 40(6): 848-852.
Huang SY, Yang BZ, Yu XX, et al. CT-derived fractional flow reserve and pericoronary fat attenuation index combined with clinical and coronary CT angiography characteristics for predicting major adverse cardiovascular events after aortic valve replacement[J]. Chin J Med Imaging Technol, 2024, 40(6): 848-852.
[19] Han D, Lin A, Gransar H, et al. Influence of coronary artery calcium score on computed tomography–derived fractional flow reserve: a Meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 14(3): 702-703.
[20] Tesche C, Otani K, De Cecco CN, et al. Influence of coronary calcium on diagnostic performance of machine learning CTFFR[J]. JACC Cardiovasc Imaging, 2020, 13(3): 760-770.
[21] Modi BN, Sankaran S, Kim HJ, et al. Predicting the physiological effect of revascularization in serially diseased coronary arteries[J]. Circ Cardiovasc Interv, 2019, 12(2): e007577.
[22] Tu S, Echavarria-Pinto M, Von Birgelen C, et al. Fractional flow reserve and coronary bifurcation anatomy[J]. JACC Cardiovasc Interv, 2015, 8(4): 564-574.
[23] Xu B, Tu S, Qiao S, et al. Diagnostic accuracy of angiographybased quantitative flow ratio measurements for online assessment of coronary stenosis[J]. J Am Coll Cardiol, 2017, 70(25): 3077-3087.
[24] Li Z, Zhang J, Xu L, et al. Diagnostic accuracy of a fast computational approach to derive fractional flow reserve from coronary CT angiography[J]. JACC Cardiovasc Imaging, 2020, 13(1): 172-175.
[25] Westra J, Andersen BK, Campo G, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR Ⅱ Europe-Japan study[J]. J Am Heart Assoc, 2018, 7(14): e009603.
[26] Liontou C, Mejía-Rentería H, Lauri FM, et al. Quantitative flow ratio for functional evaluation of in-stent restenosis[J]. EuroIntervention, 2021, 17(5): e396-e398.
[27] Erbay A, Penzel L, Abdelwahed YS, et al. Prognostic impact of pancoronary quantitative flow ratio assessment in patients undergoing percutaneous coronary intervention for acute coronary syndromes[J]. Circ Cardiovasc Interv, 2021, 14(12): e010698.
[28] Sheng X, Qiao Z, Ge H, et al. Novel application of quantitative flow ratio for predicting microvascular dysfunction after ST-segment-elevation myocardial infarction[J]. Catheter Cardiovasc Interv, 2020, 95(Suppl1): 624-632.
[29] 肖亚楠, 肖文涛, 叶发民, 等. 定量血流分数对非ST段抬高型 急性冠状动脉综合征患者冠状动脉临界病变功能性狭窄的 诊断价值[J]. 中国循环杂志, 2024, 39(1): 48-53.
Xiao YN, Xiao WT, Ye FM, et al. Diagnostic value of quantitative flow ratio on coronary critical lesion and functional stenosis in patients with non-ST segment elevation acute coronary syndrome[J]. Chin Circul J, 2024, 39(1): 48-53.
[30] Barauskas M, ?iubryt? G, Jodka N, et al. Quantitative flow ratio vs. angiography-only guided PCI in STEMI patients: oneyear cardiovascular outcomes[J]. BMC Cardiovasc Disord, 2023, 23(1): 174.
[31] 王甜, 张卫, 曹治婷, 等. 双低扫描在冠状动脉CT血管成像 的研究进展[J]. 中国医疗设备, 2023, 38(9): 148-152.
Wang T, Zhang W, Cao ZT, et al. Research progress of doublelow scan in coronary CT angiography[J]. China Med Devices, 2023, 38(9): 148-152.
[32] 张文钊, 余建群. 基于CCTA的冠状动脉粥样硬化性心脏病 人工智能研究进展[J]. 中国医疗设备, 2021, 36(8): 160-164.
Zhang WZ, Yu JQ. Advances in CCTA-based artificial intelligence for coronary artery atherosclerotic heart disease[J]. China Med Devices, 2021, 36(8): 160-164.
PDF(1599 KB)

53

Accesses

0

Citation

Detail

Sections
Recommended

/