Study on the Utilization of AI Recognition Software for DICOM Format CT Data in Ruedi-Augower Ⅱ Type Pilon Fractures

YIN Xiaodong, CHENG Yongzhong, CHEN Yang, YAN Wei, SUN Haibin, LI Ke, ZENG Fangao

China Medical Devices ›› 2025, Vol. 40 ›› Issue (2) : 130-136.

PDF(2627 KB)
PDF(2627 KB)
China Medical Devices ›› 2025, Vol. 40 ›› Issue (2) : 130-136. DOI: 10.3969/j.issn.1674-1633.20241682
RESEARCH WORK

Study on the Utilization of AI Recognition Software for DICOM Format CT Data in Ruedi-Augower Ⅱ Type Pilon Fractures

  • YIN Xiaodong1a, CHENG Yongzhong1a,2a, CHEN Yang1a, YAN Wei1b, SUN Haibin2b, LI Ke2b, ZENG Fangao2b
Author information +
History +

Abstract

Objective To evaluate the accuracy of artificial intelligence (AI) software in identifying and localizing Ruedi-Augower type Ⅱ Pilon fractures. Methods A retrospective analysis was conducted on 20 cases of Ruedi-Augower type Ⅱ Pilon fractures with DICOM format CT data collected from January 2020 to August 2024. After random numbering, the data were analyzed by a senior orthopedic surgeon and a junior orthopedic resident using both the hospital’s PACS system and AI software. Once consensus was reached on the fracture fragments requiring reduction, measurements of displacement and rotation angles along the X-axis (mediallateral), Y-axis (superior-inferior), and Z-axis (anterior-posterior) were performed in both systems. Additionally, the AI software was used to provide information on fracture classification and fracture point identification. Results The software achieved an accuracy rate of 70% for fracture classification. No statistically significant differences were observed between the two groups in terms of X, Y, and Z-axis displacements and rotation angles of the fracture fragments (P>0.05). The consistency between the two measurement methods was excellent. Conclusion The performance of the AI software in measuring displacement information for Ruedi-Augower type Ⅱ Pilon fractures is comparable to manual measurement, validating its precision in identification and localization. Its innovative approach to simulating reduction measurements can provide valuable guidance for preoperative planning of reduction strategies.

Key words

artificial intelligence; fracture classification; tibial fractures; computed tomography; software identification; fracture classification; DICOM format

Cite this article

Download Citations
YIN Xiaodong, CHENG Yongzhong, CHEN Yang, et al. Study on the Utilization of AI Recognition Software for DICOM Format CT Data in Ruedi-Augower Ⅱ Type Pilon Fractures[J]. China Medical Devices, 2025, 40(2): 130-136 https://doi.org/10.3969/j.issn.1674-1633.20241682

References

[1] Saad BN, Yingling JM, Liporace FA, et al. Pilon fractures: challenges and solutions[J]. Orthop Res Rev, 2019, 11: 149-157.
[2] Ke C, Dong X, Xiang G, et al. Risk factors and nomogram predictive model of surgical site infection in closed Pilon fractures[J]. J Orthop Surg Res, 2023, 18(1): 582.
[3] Wustro L, Silva JLVD, Moura BAB, et al. Use of threedimensional printing for tibial Pilon fracture diagnosis and treatment[J]. Rev Bras Ortop (Sao Paulo), 2024, 59(3): e456-e461.
[4] Liu JH, Zhang Q, Wei GH, et al. A retrospective comparison of double-hooked locking plates versus non-locking plates in minimally invasive percutaneous plate osteosynthesis for the treatment of comminuted distal fibular fractures accompanied by tibial Pilon fractures[J]. J Orthop Surg Res, 2023, 18(1): 287.
[5] Sang C, Zeng L, Zhong H, et al. Pilon fracture with central articular surface collapse treated by posterior tibial fenestration indirect reduction and compression technique: two cases report[J]. Medicine (Baltimore), 2024, 103(33): e39151.
[6] Ding W, Xu J, Zhu Y, et al. Comparative study on the clinical efficacy of small plate assisted anatomic plate and traditional double plate in the treatment of Rüedi and Allg?wer Ⅱ - ⅢPilon fracture[J]. BMC Surg, 2023, 23(1): 352.
[7] Thomas S, Huang BK, Korrapati A, et al. The effect of spanning external fixation on entrapped structures in tibial Pilon fractures[J]. Eur J Orthop Surg Traumatol, 2024, 34(1): 237-242.
[8] 韩昕倬, 韩大成, 周玥钧, 等. 三维重建技术在Pilon骨折术前规划中的应用进展[J]. 医学综述, 2022, 28(14): 2866-2870.
Han XZ, Han DC, Zhou YJ, et al. Advances in 3D reconstruction technology for preoperative planning of Pilon fractures[J]. Med Recapitulate, 2022, 28(14): 2866-2870.
[9] 翟禹樵, 李开南. 骨科人工智能诊断的研究进展[J]. 中国临床研究, 2021, 34(4): 542-545.
Zhai YQ, Li KN. Advances in the research of artificial intelligence diagnostics within the field of orthopedics[J]. Chin J Clin Res, 2021, 34(4): 542-545.
[10] 王亦璁, 姜保国. 骨与关节损伤[M]. 北京: 人民卫生出版社, 2012: 1390.
[11] 李硕, 刘锐, 孙海钰, 等. 高能量Pilon骨折临床研究进展[J]. 中国骨与关节杂志, 2022, 11(4): 287-291.
Li S, Liu R, Sun HY, et al. Recent advances in clinical research on high-energy Pilon fractures[J]. Chin J Bone Joint, 2022, 11(4): 287-291.
[12] Rüedi T, Matter P, Allg?wer M. Die intraartikul-aren Frakturen des distalen Unterschenkelendes [Intra-articular fractures of the distal tibial end][J]. Helv Chir Acta, 1968, 35(5): 556-582.
[13] Rüedi TP, Allg?wer M. The operative treatment of intraarticular fractures of the lower end of the tibia[J]. Clin Orthop Relat Res, 1979(138): 105-110.
[14] Hu H, Zhang J, Xie XG, et al. Identification of risk factors for surgical site infection after type Ⅱ and type Ⅲ tibial Pilon fracture surgery[J]. World J Clin Cases, 2022, 10(19): 6399-6405.
[15] 顾联, 朱伟, 朱礼贤. Ruedi Allgower Ⅱ、Ⅲ型Pilon骨折48例的手术体会[J]. 实用骨科杂志, 2010, 16(2): 148-150.
Gu L, Zhu W, Zhu LX. Surgical insights from the management of 48 cases of Ruedi Allgower Ⅱ and Ⅲ type Pilon fractures[J]. J Pract Orthop, 2010, 16(2): 148-150.
[16] Kottmeier SA, Madison RD, Divaris N. Pilon fracture: preventing complications[J]. J Am Acad Orthop Surg, 2018, 26(18): 640-651.
[17] Rubio-Suarez JC, Carbonell-Escobar R, Rodriguez-Merchan EC, et al. Fractures of the tibial Pilon treated by open reduction and internal fixation (locking compression plate-less invasive stabilising system): complications and sequelae[J]. Injury, 2018(Suppl 2): S60-S64.
[18] Chen Y, Huang X, Chen Y, et al. Comparison of complications of early and delayed open reduction and internal fixation for treating Pilon fracture: a protocol of systematic review and meta-analysis[J]. PLoS One, 2021, 16(11): e0258962.
[19] Lu V, Zhang J, Zhou A, et al. Open versus closed Pilon fractures: comparison of management, outcomes, and complications[J]. Injury, 2022, 53(6):2259-2267.
[20] Mair O, Pflüger P, Hoffeld K, et al. Management of Pilon fractures-current concepts[J]. Front Surg, 2021, 8: 764232.
[21] Zelle BA, Dang KH, Ornell SS. High-energy tibial Pilon fractures: an instructional review[J]. Int Orthop, 2019, 43(8): 1939-1950.
[22] Tilkeridis K, Iliopoulos E, Wall S, et al. Severe Pilon fractures: the role of quality of reduction in clinical and functional outcomes[J]. Cureus, 2024, 16(7): e65245.
[23] Cursaru A, Popa M, Lupu A, et al. An examination of personalized approaches in the management of ankle fractures: a thorough evaluation of soft tissue factors, treatment methods, and patient adherence[J]. Cureus, 2023, 15(9): e45507.
[24] Flores M, Ciminero M, Kottmeier SA, et al. Pilon fractures: consensus and controversy[J]. OTA Int, 2023, 6(3 Suppl): e236.
[25] Bi?ici V, Bing?l ?. Do different surgical techniques in tibia Pilon fractures change the results of the midterm?[J]. Turk J Med Sci, 2020, 50(6): 1559-1565.
PDF(2627 KB)

25

Accesses

0

Citation

Detail

Sections
Recommended

/