Advances in Radiomics and Deep Learning in Predicting Microvascular Invasion in Hepatocellular Carcinoma

HE Bianhong, WU Zhifeng

China Medical Devices ›› 2025, Vol. 40 ›› Issue (4) : 170-176.

PDF(1375 KB)
PDF(1375 KB)
China Medical Devices ›› 2025, Vol. 40 ›› Issue (4) : 170-176. DOI: 10.3969/j.issn.1674-1633.20240858
REVIEW

Advances in Radiomics and Deep Learning in Predicting Microvascular Invasion in Hepatocellular Carcinoma

  • HE Bianhong1, WU Zhifeng2
Author information +
History +

Abstract

Hepatocellular carcinoma (HCC) is a common malignant tumor that poses a huge threat to human health. Microvascular invasion (MVI) is an important cause of postoperative recurrence and metastasis in HCC patients. Currently, the diagnosis of MVI is mainly confirmed through postoperative pathological examination, which, however, is an invasive method. Non-invasive prediction of MVI before surgery is beneficial for guiding individualized treatment and improving prognosis. In recent years, researchers have achieved remarkable results in predicting MVI in HCC using radiomics and Deep learning (DL) methods. The application of these methods has significantly improved the accuracy of predicting MVI in HCC, providing more precise guidance for patients’ treatment. This article elaborated on the research achievements in predicting MVI in HCC based on radiomics and DL in recent years, with the expectation of providing a reference for the clinical realization of precise non-invasive prediction methods, facilitating the formulation of individualized treatment plans, improving patients’ prognosis, and promoting the development of diagnostic and treatment technologies for liver cancer.

Key words

hepatocellular carcinoma; microvascular invasion; computed tomography; magnetic resonance imaging; radiomics; deep learning

Cite this article

Download Citations
HE Bianhong, WU Zhifeng. Advances in Radiomics and Deep Learning in Predicting Microvascular Invasion in Hepatocellular Carcinoma[J]. China Medical Devices, 2025, 40(4): 170-176 https://doi.org/10.3969/j.issn.1674-1633.20240858

References

[1] Rumgay H, Ferlay J, De Martel C, et al. Global, regional and national burden of primary liver cancer by subtype[J]. Eur J Cancer, 2022, 161: 108-118.
[2] Hong SB, Choi SH, Kim SY, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: a systematic review and Meta-analysis[J]. Liver Cancer, 2021, 10(2): 94-106.
[3] Sheng X, Ji Y, Ren GP, et al. A standardized pathological proposal for evaluating microvascular invasion of hepatocellular carcinoma: a multicenter study by LCPGC[J]. Hepatol Int, 2020, 14(6): 1034-1047.
[4] 周鹏, 王冬青, 刘护丽, 等. 基于CT影像组学列线图对乏脂肪肾血管平滑肌脂肪瘤与肾透明细胞癌鉴别诊断的价值[J]. 中国医疗设备, 2023, 38(4): 96-101.
Zhou P, Wang DQ, Liu HL, et al. Value of preoperative CT-based nomogram in the differential diagnosis of fat-poor angiomyolipoma and clear cell renal cell carcinoma[J]. China Med Devices, 2023, 38(4): 96-101.
[5] 周牧野, 李松, 赵灿灿, 等. 基于双参数MRI的影像组学特征融合方法 预测前列腺腺癌Gleason分级的研究[J]. 中国医疗设备, 2023, 38(3): 72-77.
Zhou MY, Li S, Zhao CC, et al. Study of radiomics features fusion based on biparametric-MRI in predicting Gleason grade of prostate adenocarcinoma[J]. China Med Devices, 2023, 38(3): 72-77.
[6] 党俊明, 朱超华, 黄慧娴, 等. 基于MRI影像组学预测宫颈鳞癌中,低分化的临床价值[J]. 中国医疗设备, 2022, 37(11): 71-75.
Dang JM, Zhu CH, Huang HX, et al. Clinical value of predicting moderate and low differentiation of cervical squamous cell carcinoma based on MRI radiomics characteristic[J]. China Med Devices, 2022, 37(11): 71-75.
[7] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762.
[8] Lv K, Cao X, Du P, et al. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(20): 2176-2183.
[9] Wang L, Wu M, Li R, et al. MVI-mind: a novel deep-learning strategy using computed tomography (CT)-based radiomics for end-to-end high efficiency prediction of microvascular invasion in hepatocellular carcinoma[J]. Cancers (Basel), 2022, 14(12): 2956.
[10] Liu SC, Lai J, Huang JY, et al. Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals[J]. Cancer Imaging, 2021, 21(1): 56.
[11] Park S, Kim JH, Kim J, et al. Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results[J]. Acta Radiol, 2023, 64(3): 907-917.
[12] Xu T, Ren L, Liao M, et al. Preoperative radiomics analysis of contrast-enhanced CT for microvascular invasion and prognosis stratification in hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2022, 9: 189-201.
[13] Zhang W, Yang R, Liang F, et al. Prediction of microvascular invasion in hepatocellular carcinoma with a multi-disciplinary team-like radiomics fusion model on dynamic contrast-enhanced computed tomography[J]. Front Oncol, 2021, 11: 660629.
[14] Zhong X, Long H, Su L, et al. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and Meta-analysis[J]. Abdom Radiol (NY), 2022, 47(6): 2071-2088.
[15] Renzulli M, Mottola M, Coppola F, et al. Automatically extracted machine learning features from preoperative CT to early predict microvascular invasion in HCC: the role of the zone of transition (ZOT)[J]. Cancers (Basel), 2022, 14(7): 1816.
[16] 杨砾寒, 陈梦林, 陈诗, 等. MRI影像组学联合炎症因子对肝细胞肝癌微血管侵犯的预测价值[J]. 放射学实践, 2024, 39(5): 585-590.
Yang LH, Chen ML, Chen S, et al. The predictive value of MRI radiomics integrated with inflammatory factors for microvascular invasion in hepatocellular carcinoma[J]. Radiol Pract, 2024, 39(5): 585-590.
[17] 徐向东, 张婉丽, 梁芳蓉, 等. MSCT增强扫描期相及VOI的选择在基于影像组学方法预测原发性肝细胞癌微血管侵犯中的价值[J]. 广州医药, 2023, 54(5): 36-43.
Xu XD, Zhang WL, Liang FR, et al. The value of contrast-enhanced MSCT with phases and VOI strategies in the prediction of microvascular invasion in primary hepatocellular carcinoma based on radiomics[J]. Guangzhou Med J, 2023, 54(5): 36-43.
[18] 赵华飞, 冯智超, 李慧玲, 等. 感兴趣区范围对CT影像组学模型预测肝细胞癌微血管侵犯的影响[J]. 中南大学学报(医学版), 2022, 47(8): 1049-1057.
Zhao HF, Feng ZC, Li HL, et al. Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma[J]. J Cent S Univ (Med Sci), 2022, 47(8): 1049-1057.
[19] Hu F, Zhang Y, Li M, et al. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures[J]. Front Oncol, 2022, 12: 853336.
[20] Shindoh J, Andreou A, Aloia TA, et al. Microvascular invasion does not predict long-term survival in hepatocellular carcinoma up to 2 cm: reappraisal of the staging system for solitary tumors[J]. Ann Surg Oncol, 2013, 20(4): 1223-1229.
[21] Hwang S, Lee YJ, Kim KH, et al. The impact of tumor size on long-term survival outcomes after resection of solitary hepatocellular carcinoma: single-institution experience with 2558 patients[J]. J Gastrointest Surg, 2015, 19(7): 1281-1290.
[22] 张煌斌, 鄢业鸿, 万昊, 等. 基于SII、AFP和肿瘤长径的肝细胞癌术前微血管侵犯的预测研究[J]. 中华肝胆外科杂志, 2021, 27(10): 733-738.
Zhang HB, Yan YH, Wan H, et al. Preoperative prediction of microvascular invasion in patients with hepatocellular carcinoma based on SII, AFP and tumor diameter[J]. Chin J Hepatob Surg, 2021, 27(10): 733-738.
[23] Pawlik TM, Delman KA, Vauthey JN, et al. Tumor size predicts vascular invasion and histologic grade: implications for selection of surgical treatment for hepatocellular carcinoma[J]. Liver Transpl, 2005, 11(9): 1086-1092.
[24] 许梁, 梁宏伟, 杜圣, 等. 影响肝细胞癌患者肿瘤微血管侵犯的多因素分析[J]. 实用肝脏病杂志, 2024, 27(1): 92-95.
Xu L, Liang HW, Du S, et al. Risk factors for microvascular invasion in patients with hepatocellular carcinoma[J]. J Pract Hepatol, 2024, 27(1): 92-95.
[25] Meng XP, Tang TY, Ding ZM, et al. Preoperative microvascular invasion prediction to assist in surgical plan for single hepatocellular carcinoma: better together with radiomics[J]. Ann Surg Oncol, 2022, 29(5): 2960-2970.
[26] 俞超, 胡晓欣, 张汐, 等. 基于CT影像组学及临床资料预测肝细胞癌微血管侵犯的研究[J]. 复旦学报(医学版), 2023, 50(1): 15-25.
Yu C, Hu XX, Zhang X, et al. Prediction of microvascular invasion in hepatocellular carcinoma based on CT radiomics and clinical data[J]. Fudan Univ J Med Sci, 2023, 50(1): 15-25.
[27] 熊亮霞, 方淇民, 李淑豪, 等. 术前增强CT影像组学预测肝癌术后早期复发的价值[J]. 放射学实践, 2022, 37(4): 432-436.
Xiong LX, Fang QM, Li SH, et al. Value of radiomics of contrast-enhanced CT in prediction of early postoperative recurrence in hepatocellular carcinoma[J]. Radiol Pract, 2022, 37(4): 432-436.
[28] 刘畅, 赵泓博, 黄京城, 等. 基于CT增强影像组学的支持向量机模型术前预测肝细胞癌微血管浸润的研究[J]. 临床放射学杂志, 2021, 40(12): 2390-2396.
Liu C, Zhao HB, Huang JC, et al. Contrast-enhanced CT radiomics combined with support vector machine for preoperatively predicting microvascular invasion in hepatocellular carcinoma[J]. J Clin Radiol, 2021, 40(12): 2390-2396.
[29] Renzulli M, Brocchi S, Cucchetti A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma?[J]. Radiology, 2016, 279(2): 432-442.
[30] Matsui O, Kobayashi S, Sanada J, et al. Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis[J]. Abdom Imaging, 2011, 36(3): 264-272.
[31] Nishie A, Yoshimitsu K, Asayama Y, et al. Radiologic detectability of minute portal venous invasion in hepatocellular carcinoma[J]. AJR Am J Roentgenol, 2008, 190(1): 81-87.
[32] Wang L, Zhang Y, Li J, et al. A nomogram of magnetic resonance imaging for preoperative assessment of microvascular invasion and prognosis of hepatocellular carcinoma[J]. Dig Dis Sci, 2023, 68(12): 4521-4535.
[33] Nebbia G, Zhang Q, Arefan D, et al. Pre-operative microvascular invasion prediction using multi-parametric liver MRI radiomics[J]. J Digit Imaging, 2020, 33(6): 1376-1386.
[34] 郁义星, 胡春洪, 王希明, 等. 增强CT影像组学和机器学习在术前预测肝细胞癌微血管侵犯中的应用价值[J]. 中华医学杂志, 2021, 101(17): 1239-1245.
Yu YX, Hu CH, Wang XM, et al. Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Natl Med J China, 2021, 101(17): 1239-1245.
[35] 刘小芳, 汪清华, 杨洪安, 等. 基于多序列MRI影像组学评分及临床参数预测肝细胞癌微血管浸润的nomogram模型研究[J]. 放射学实践, 2023, 38(8): 1018-1025.
Liu XF, Wang QH, Yang HA, et al. A nomogram model for predicting microvascular invasion of hepatocellular carcinoma based on multi-sequences MRI radiomics score and clinical-pathology-imaging parameters[J]. Radiol Pract, 2023, 38(8): 1018-1025.
[36] Tong X, Li J. Noninvasively predict the micro-vascular invasion and histopathological grade of hepatocellular carcinoma with CT-derived radiomics[J]. Eur J Radiol Open, 2022, 9: 100424.
[37] 李铭浩, 王琛, 杨帅, 等. 基于CT影像组学和集成学习预测肝细胞癌微血管侵犯的研究[J]. 影像研究与医学应用, 2023, 7(4): 90-92.
[38] 钟伟雄, 梁芳蓉, 杨蕊梦, 等. 基于多期动态增强CT影像组学特征和多分类器分层融合模型预测肝细胞癌的微血管侵犯[J]. 南方医科大学学报, 2024, 44(2): 260-269.
Zhong WX, Liang FR, Yang RM, et al. Prediction of microvascular invasion in hepatocellular carcinoma based on multi-phase dynamic enhanced CT radiomics feature and multi-classifier hierarchical fusion model[J]. J South Med Univ, 2024, 44(2): 260-269.
[39] Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510.
[40] Liu Y, Zhang Z, Zhang H, et al. Clinical prediction of microvascular invasion in hepatocellular carcinoma using an MRI-based graph convolutional network model integrated with nomogram[J]. Br J Radiol, 2024, 97(1157): 938-946.
[41] Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3): 821-833.
[42] Song D, Wang Y, Wang W, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters[J]. J Cancer Res Clin Oncol, 2021, 147(12): 3757-3767.
[43] Cao L, Wang Q, Hong J, et al. MVI-TR: a transformer-based deep learning model with contrast-enhanced CT for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Cancers (Basel), 2023, 15(5): 1538.
[44] Zhang S, Duan C, Zhou X, et al. Radiomics nomogram for prediction of microvascular invasion in hepatocellular carcinoma based on MR imaging with Gd-EOB-DTPA[J]. Front Oncol, 2022, 12: 1034519.
[45] 何颖, 周显军, 陈鑫, 等. 基于CT影像组学特征术前预测肝细胞癌微血管侵犯的价值[J]. 精准医学杂志, 2022, 37(1): 11-16.
He Y, Zhou XJ, Chen X, et al. Value of CT-based radiomic features in preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. J Precis Med, 2022, 37(1): 11-16.
[46] Zhou Z, Xia T, Zhang T, et al. Prediction of preoperative microvascular invasion by dynamic radiomic analysis based on contrast-enhanced computed tomography[J]. Abdom Radiol (NY), 2024, 49(2): 611-624.
[47] Zheng X, Xu YJ, Huang J, et al. Predictive value of radiomics analysis of enhanced CT for three-tiered microvascular invasion grading in hepatocellular carcinoma[J]. Med Phys, 2023, 50(10): 6079-6095.
[48] Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets[J]. Med Phys, 2017, 44(10): 5162-5171.
[49] Yang Y, Zhou Y, Zhou C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077.
[50] Lv C, He N, Yang JJ, et al. Prediction of 3-year recurrence rate of hepatocellular carcinoma after resection based on contrast-enhanced CT: a single-centre study[J]. Br J Radiol, 2023, 96(1145): 20220702.
PDF(1375 KB)

23

Accesses

0

Citation

Detail

Sections
Recommended

/