基于深度学习的重建算法在CCTA高分辨率成像中的应用

王怡然,詹鹤凤,吴文杰,侯佳蒙,马雪妍,张永高

中国医疗设备 ›› 2021, Vol. 36 ›› Issue (10) : 24-27.

PDF(1527 KB)
PDF(1527 KB)
中国医疗设备 ›› 2021, Vol. 36 ›› Issue (10) : 24-27. DOI: 10.3969/j.issn.1674-1633.2021.10.005
专论

基于深度学习的重建算法在CCTA高分辨率成像中的应用

  • 王怡然,詹鹤凤,吴文杰,侯佳蒙,马雪妍,张永高
作者信息 +

Application of Deep Learning-Based Reconstruction Algorithms for CCTA High-Resolution Imaging

  • WANG Yiran, ZHAN Hefeng, WU Wenjie, HOU Jiameng, MA Xueyan, ZHANG Yonggao
Author information +
文章历史 +

摘要

目的 探讨深度学习图像重建(Deep Learning Image Reconstruction,DLIR)对高分辨率CT血管成像图像质量和诊 断准确性的影响。方法 前瞻性纳入56例患者在GE Revolution CT以高分辨率模式进行冠状动脉CT血管成像(Coronary CT Angiography,CCTA),分别使用50%权重的自适应迭代重建技术(Adaptive Statistical Iterative Reconstruction,ASIR)-V和 中级别(DLIR-M)、高级别(DLIR-H)重建原始数据(应用高清卷积核)。记录主动脉根部和主要冠状动脉近段的图像 噪声,并计算信噪比(Signal to Noise Ratio,SNR)和对比噪声比(Contrast to Noise Ratio,CNR)以客观评价图像质量。 在32例患者亚组中,比较ASIR-V 50%、DLIR-M和DLIR-H对冠状动脉狭窄的诊断准确率,并与有创冠状动脉造影进行比 较。主观图像质量由两名有5年以上经验的影像诊断医师按5分制进行评级。结果 与ASIR-V 50%相比,DLIR-H和DLIR-M 的噪声分别降低了54.8%和59.9%(P值均<0.05)丨SNR和CNR显著增加,主观图像质量较ASIR-V 50%有显著改善(P值均 <0.05)。DLIR-H和DLIR-M对冠状动脉狭窄的诊断准确性无显著影响。结论 与ASIR-V相比,DLIR能提升高分辨率模式下 CCTA图像的整体质量,并不影响对冠状动脉阻塞性心脏病的诊断准确性。

Abstract

Objective To explore the influence of deep learning image reconstruction (DLIR) on image quality and diagnostic accuracy of high-resolution CT angiography. Methods 56 patients underwent coronary computed tomography angiography (CCTA) on a high-definition CT (Revolution CT, GE Healthcare). Data sets were reconstructed with ASiR-V 50% (applying HD kernels) and with DLIR at medium and high settings (DLIR-M and DLIR-H), respectively. The image noise, signal to noise ratio (SNR), and contrast to noise ratio (CNR) on aorta root and main coronary proximal segments were calculated to evaluate image quality objectively. In a subgroup of 32 patients, diagnostic accuracy of ASiR-V 50%, DLIR-M and DLIR-H for diagnosis of coronary artery disease (CAD) were compared with invasive coronary angiography. Subjective image quality was blindly graded by two imaging diagnosticians with over 5 years of experience on a five-point scale. Results The noise of DLIR-M and DLIR-H were significantly decreased by 54.8% and 59.9%, while SNR and CNR were significantly increased compared to ASiR-V 50% (P<0.05). The subjective image quality improved significantly (P<0.05). DLIR-H and DLIR-M had no significant effect on the diagnostic accuracy of coronary artery stenosis. Conclusion Compared with ASIR-V, DLIR could effectively improve the overall image quality of CCTA images in high-resolution mode. and has no effect on diagnostic accuracy of CCTA for CAD detection.

引用本文

导出引用
王怡然, 詹鹤凤, 吴文杰, . 基于深度学习的重建算法在CCTA高分辨率成像中的应用[J]. 中国医疗设备, 2021, 36(10): 24-27 https://doi.org/10.3969/j.issn.1674-1633.2021.10.005
WANG Yiran, ZHAN Hefeng, WU Wenjie, et al. Application of Deep Learning-Based Reconstruction Algorithms for CCTA High-Resolution Imaging[J]. China Medical Devices, 2021, 36(10): 24-27 https://doi.org/10.3969/j.issn.1674-1633.2021.10.005
中图分类号: R541.4丨TP18丨TP391.4   

参考文献

[1] Ladeiras-Lopes R,Bettencourt N,Ferreira N,et al.CT myocardial perfusion and coronary CT angiography: influence of coronary calcium on a stress-rest protocol[J].J Cardiovasc Comput Tomogr,2016,10(3):215-220.

PDF(1527 KB)

553

Accesses

0

Citation

Detail

段落导航
相关文章

/