一种基于LSTM模型的医用耗材需求量预测方法

杨燕,钱正瑛,庄希,金伟

中国医疗设备 ›› 2022, Vol. 37 ›› Issue (6) : 123-126.

PDF(1763 KB)
PDF(1763 KB)
中国医疗设备 ›› 2022, Vol. 37 ›› Issue (6) : 123-126. DOI: 10.3969/j.issn.1674-1633.2022.06.029
研究论著

一种基于LSTM模型的医用耗材需求量预测方法

  • 杨燕,钱正瑛,庄希,金伟
作者信息 +

LSTM Model-Based Method for Forecasting the Demand of Medical Consumables

  • YANG Yan, QIAN Zhengying, ZHUANG Xi, JIN Wei
Author information +
文章历史 +

摘要

目的 探讨长短期记忆神经网络模型(Long Short Term Memory Neural Networks,LSTM)在医用耗材需求量管理中 的应用,分析和预测未来一段时间内医用常规耗材的使用需求,实现医用耗材需求量的精细化管理。方法 采用LSTM模型 对无锡市某三甲医院静脉留置针2015—2021年的库房领用量进行分析,预测未来一季度及半年的领用情况。结果 根据2019 年与2021年预测结果对比及模型各评价指标的分析,发现平均绝对百分比误差最小值是2.27%,最大值为4.54%,出现在 2021年预测半年,所有预测平均绝对误差均不超过5%,受到新冠疫情影响时预测精度下降有限。结论 LSTM神经网络模型 能够较为准确地进行医院医用耗材的需求量预测,可作为医用耗材的库存基数与采购策略制定的参考数据。

Abstract

Objective To explore the application of long short term memory neural networks (LSTM) in the demand management of medical consumables, to analyze and predict the usage demand of medical routine consumables in the future, and to realize the fine management of the demand of medical consumables. Methods The LSTM model was used to analyze the amount of intravenous indwelling needles received by the depot of a tertiary hospital in Wuxi from 2015 to 2021, and to predict the future quarterly or even half-yearly receipt. Results Based on the comparison of the prediction results between 2019 and 2021 and the analysis of each evaluation index of the model, it was found that the minimum average absolute percentage error was 2.27%, and the maximum value was 4.54% in the six months of 2021. The average absolute percentage error of all the predictions was less than 5%, and the prediction accuracy was limited when affected by COVID-19. Conclusion The LSTM neural network model can predict the demand of medical consumables in hospitals more accurately, and can be used as reference data for the inventory base and procurement strategy development of medical consumables.

关键词

长短期记忆神经网络模型 / 医用耗材需求管理 / 新冠疫情

Key words

long short term memory neural networks / medical consumables demand management / COVID-19 pandemic

引用本文

导出引用
杨燕, 钱正瑛, 庄希, . 一种基于LSTM模型的医用耗材需求量预测方法[J]. 中国医疗设备, 2022, 37(6): 123-126 https://doi.org/10.3969/j.issn.1674-1633.2022.06.029
YANG Yan, QIAN Zhengying, ZHUANG Xi, et al. LSTM Model-Based Method for Forecasting the Demand of Medical Consumables[J]. China Medical Devices, 2022, 37(6): 123-126 https://doi.org/10.3969/j.issn.1674-1633.2022.06.029
中图分类号: R318    R197.39   

参考文献

[1] 杨越,潘常青,朱燕刚,等.基于时间序列模型的医院医用高值 耗材需求量预测研究[J].中国医疗设备,2020,35(12):146-149.

基金

南京医科大学科技发展基金项目(NMUB2019279)

PDF(1763 KB)

Accesses

Citation

Detail

段落导航
相关文章

/