目的 研究集中管理模式下排队论M/M/C模型输入数据选取精度对监护仪合理配置数量预测准确性的影响。方法 选取本院11个病区作为研究对象,提取医嘱时长作为监护仪实际使用时长,按照11个病区合并计算(组别1)、内外科分别 合并计算(组别2)、各病区独立计算(组别3)设立对比组别,建立排队论M/M/C预测模型,结合护理要求和排队系统等 待时长曲线推测监护仪配置数量预测区间,分别对比3个组别的预测区间与实际配置数量差异值。结果 组别1模型预测差 值最大(最大差值为7.84台,最小差值为2.45台),组别2模型预测差值次之(最大差值为6.73台,最小差值为2.27台), 组别3模型预测差值最小(仅有4个病区存在差异,差值为1或3台)。3组差值之间的差异有统计学意义 (H=20.768) , (P<0.001) ),组别3模型预测差值与组别1和2的模型预测差值相比均有统计学意义(P<0.001),组别1和2模型预测差值相比 差异无统计学意义( P=0.465)。结论 输入数据选取精度因素对排队论M/M/C模型预测准确性具有一定影响,各医疗机构 在利用排队论模型测算配置数量时,应尽量提高数据选取精度,按最小病区单元选取输入数据,并在预测结果的基础上结 合临床实际情况浮动实际配置数量,提升配置数量合理性。
Abstract
Objective To study the impact of input data selection accuracy of the M/M/C model in queuing theory on the accuracy of predicting the reasonable allocation quantity of monitors under centralized management mode. Methods A total of eleven wards were selected as research subjects, and the duration of medical orders was extracted as the actual usage time of the monitor. The comparison groups were set up according to the combined calculation of 11 wards (group 1), the combined calculation of medicine and surgery respectively (group 2), and the independent calculation of each ward (group 3), and the prediction model of M/M/C model in queuing theory was established. Combined with the nursing requirements and the waiting time curve of the queuing system, the prediction interval of the number of monitors configured was deduced, and the difference between the prediction interval and the actual number of monitors configured under three conditions was compared respectively. Results The group 1 model predicted the largest difference (maximum difference was 7.84, minimum difference was 2.45), the group 2 model predicted the next largest difference (maximum difference was 6.73, minimum difference was 2.27), and the group 3 model predicted the smallest difference (only 4 wards with differences of 1 or 3). The difference between the three groups was statistically significant (H=20.768, P<0.001), the difference between the group 3 model and the group 1 and 2 model was statistically significant (P<0.001) ,and the difference between the group 1 and 2 model was not statistically significant (P=0.465). Conclusion The selection accuracy of input data has a certain impact on the prediction accuracy of the M/M/C model in queuing theory. When calculating the number of allocation using the queuing theory model, medical institutions should improve the accuracy of data selection as far as possible, select input data according to the smallest ward unit, and adjust the actual number of allocation based on the prediction Results and the actual clinical situation to improve the rationality of the number of allocation.
关键词
集中管理;数据选取精度;排队论;M/M/C模型;合理配置数量;监护仪;预测差异
{{custom_keyword}} /
Key words
centralized management; data selection accuracy; queuing theory; M/M/C model; reasonable allocation quantity; monitor; predicting differences
{{custom_keyword}} /
中图分类号:
R197.39
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张滨仁,张景泉,朱红. 试论医疗设备发展展望[J]. 科学与财富,2019(7): 184.
[2] 廖道峰. 国产医疗设备发展与应用现状及对策[J]. 医疗装备,2019,32(4): 48-49.
[3] 庄朋,曹燕,钱丹,等. ICU护士应对心电监护仪报警疲劳的研究进展[J]. 当代护士,2024,31(9): 5-9.
[4] 倪伟杰. 心电监护仪质量控制检测效果评价[J]. 中国医疗器械信息,2024,30(8): 158-160.
Ni WJ. Evaluation of quality control detection effect of ECG monitor[J]. China Med Device Inf, 2024, 30(8): 158-160.
[5] 高雪梅,郑飞. 品管圈在降低监护仪故障率中的应用[J]. 中国设备工程,2024(8): 84-86.
[6] 常智国. 基于DEA方法的DY医院心电监护仪配置效率研究[D]. 邯郸:河北工程大学,2022.
Chang ZG. Research on configuration efficiency of ECG monitor in DY hospital based on DEA method[J]. Handan: Hebei University of Engineering, 2022.
[7] 胥松,徐娜. 医院医疗设备精细化管理中的问题研究[J]. 中国高新科技,2024(2): 18-20.
Xu S, Xu N. Research on the problems in the refined management of medical equipment in hospitals[J]. Zhong Guo Gao Xin Ke Ji, 2024(2): 18-20.
[8] 李健,钟晓. 基于物联网技术的急救类医疗设备精细化管理研究[J]. 医疗装备,2024,37(7): 60-63.
Li J, Zhong X. Research on refined management for emergency medical equipment based on Internet of Things technology[J]. Med Equip, 2024, 37(7): 60-63.
[9] 谢峰,吴航,王晓龙,等. 以监护仪、输液泵、注射泵为例对全院级医疗设备集中管理模式的实践与探索[J]. 中国医疗设备,2024,39(1): 119-124.
Xie F, Wu H, Wang XL, et al. Research and practice on the centralized management mode of medical equipment in the hospital taking monitor, infusion pump and injection pump as examples[J]. China Med Devices, 2024, 39(1): 119-124.
[10] 孙少平,李元峻,周云波,等. 医疗设备调配中心监护仪集中管理模式的探索与实践[J]. 中国医疗设备,2019,34(3): 132-135.
Sun SP, Li YJ, Zhou YB, et al. Exploration and practice of centralized management mode of monitor in medical equipment deployment center[J]. China Med Devices, 2019, 34(3): 132-135.
[11] 李倩,马姝丽,郭洁,等. 儿童区域医疗中心建设背景下医学装备集中调配机制探索[J]. 中国设备工程,2024(5): 133-136.
[12] 刘佳佳,朱奇,柳洋,等. 新疆某三甲医院医疗设备共享管理运行方案的研究与实践[J]. 中国医疗设备,2021,36(3): 147-150.
Liu JJ, Zhu Q, Liu Y, et al. Research and practice on the operation scheme of medical equipment sharing management in a grade A hospital in Xinjiang[J]. China Med Devices, 2021, 36(3): 147-150.
[13] 谢峰,王晓龙,郭米嘉,等. 基于排队论M/M/C模型的生命支持类医疗设备配置数量评估研究[J]. 中国医疗设备,2022,37(1): 159-161.
Xie F, Wang XL, Guo MJ, et al. Research on the evaluation of allocation quantity of life support devices based on M/M/C model of queuing theory[J]. China Med Devices, 2022, 37(1): 159-161.
[14] 刘伟军,邹泽,邱宾,等. 基于排队论M/M/C模型的门诊医技排程与医疗设备配置的统筹优化研究[J]. 中国医疗设备,2020,35(9): 140-143.
Liu WJ, Zou Z, Qiu B, et al. Research on the overall optimization of outpatient medical technology scheduling and medical equipment allocation based on M/M/C model of queuing theory[J]. China Med Devices, 2020, 35(9): 140-143.
[15] 刘蕾,盛薇,叶苓,等. 基于排队论模型的门诊输液室护士配置研究[J]. 护理管理杂志,2016,16(9): 679-681.
Liu L, Sheng W, Ye L, et al. Research on nurse staffing in outpatient transfusion room based on queuing theory model[J]. J Nurs Adm, 2016, 16(9): 679-681.
[16] 柴海霞,刘菊英,王锋,等. 采用排队论优化十堰市某医院门诊采血技师配置对患者满意度的影响[J]. 医学与社会,2016,29(10): 49-51.
Chai HX, Liu JY, Wang F, et al. Effect of patient satisfaction by queuing theory in outpatient department of scheduling blood collection technician of a hospital in Shiyan[J]. Med Soc, 2016, 29(10): 49-51.
[17] 宋文琪,李启亮,金芳,等. 基于排队论的门诊化验服务效率评估与改进[J]. 中国医院管理,2014,34(1): 51-53.
Song WQ, Li QL, Jin F, et al. Evaluation and improvement of efficiency of outpatient laboratory service based on queuing theory[J]. Chin Hosp Manag, 2014, 34(1): 51-53.
[18] 邓惠霖. 基于排队论模型的门诊抽血室人员配备研究[J]. 中国保健营养,2019,29(9): 396.
[19] 周忠彬,张静,杨颖. 基于运筹排队论模型的MRI统筹优化研究[J]. 中国卫生信息管理杂志,2023,20(5): 826-832.
Zhou ZB, Zhang J, Yang Y. Research on the overall optimization of the MRI based on operational research queuing theory model[J]. Chin J Health Inform Manag, 2023, 20(5): 826-832.
[20] 于弘,陶学强,伍瑞昌. 基于排队论的某区域内医院MRI配置分析[J]. 解放军医院管理杂志,2012,19(5): 428-431.
Yu H, Tao XQ, Wu RC. MRI allocation analysis of regional hospitals based on queuing theory[J]. Hosp Adm J Chin PLA, 2012, 19(5): 428-431.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
北京市属医院科研培育项目(PG2024017;PG2023017)。
{{custom_fund}}