呼出气丙泊酚监测技术的研究进展

赵麟茜,陈星,余启文,王菲,程珍珍,张冯江

中国医疗设备 ›› 2025, Vol. 40 ›› Issue (4) : 144-150.

PDF(1390 KB)
PDF(1390 KB)
中国医疗设备 ›› 2025, Vol. 40 ›› Issue (4) : 144-150. DOI: 10.3969/j.issn.1674-1633.20240546
综述

呼出气丙泊酚监测技术的研究进展

  • 赵麟茜1,2,陈星3,余启文4,王菲3,程珍珍2,张冯江2
作者信息 +

Research Progress in Exhaled Breath Propofol Monitoring Techniques

  • ZHAO Linqian1,2, CHEN Xing3, YU Qiwen4, WANG Fei3, CHENG Zhenzhen2, ZHANG Fengjiang2
Author information +
文章历史 +

摘要

丙泊酚是临床最常用的静脉麻醉剂,广泛应用于手术室和重症监护室等医疗环境中。但丙泊酚应用过量或不足均会 引起围手术期及长期不良反应,因此,能够直接、无创、可靠监测丙泊酚血药浓度的手段十分重要。区别于其他静脉麻醉 剂,丙泊酚具有非常高的蒸汽压。丙泊酚的高蒸汽压使其能够在呼出气中被检测,且其呼出气浓度可以反映血药浓度,这 使得无创监测丙泊酚血药浓度成为可能。本文就不同呼出气丙泊酚监测技术的研究进展进行综述,归纳了目前该技术存在 的问题,并对未来研究方向和发展趋势进行展望,以期为临床合理应用丙泊酚、提升麻醉安全性及优化相关监测技术提供 参考。

Abstract

Propofol is the most frequently used intravenous anesthetic in clinical practice and is extensively applied in medical environments such as operating rooms and intensive care units. However, both over-administration and under-administration of propofol can induce perioperative and long-term adverse effects. Thus, it is of great significance to possess direct, non-invasive, and reliable methods for monitoring the blood concentration of propofol. Different from other intravenous anesthetics, propofol has an extremely high vapor pressure. This high vapor pressure enables its detection in exhaled breath, and the concentration of propofol in exhaled breath can mirror its blood concentration, rendering non-invasive monitoring of propofol blood levels feasible. This paper reviewed the research progress of various exhaled-breath propofol monitoring technologies, summarized the existing problems of these technologies, and forecasted the future research directions and development trends, with the aim of providing references for the rational clinical application of propofol, enhancing the safety of anesthesia, and optimizing the relevant monitoring technologies.

关键词

丙泊酚;静脉麻醉;呼出气浓度;麻醉监测;血药浓度;无创监测

Key words

propofol; intravenous anesthesia; exhaled breath concentration; anesthesia monitoring; blood concentration; noninvasive monitoring

引用本文

导出引用
赵麟茜, 陈星, 余启文, . 呼出气丙泊酚监测技术的研究进展[J]. 中国医疗设备, 2025, 40(4): 144-150 https://doi.org/10.3969/j.issn.1674-1633.20240546
ZHAO Linqian, CHEN Xing, YU Qiwen, et al. Research Progress in Exhaled Breath Propofol Monitoring Techniques[J]. China Medical Devices, 2025, 40(4): 144-150 https://doi.org/10.3969/j.issn.1674-1633.20240546
中图分类号: R614   

参考文献

[1] Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol[J]. Clin Pharmacokinet, 2018, 57(12): 1539-1558.
[2] Hung KC, Chen JY, Wu SC, et al. A systematic review and meta-analysis comparing the efficacy and safety of ciprofol (HSK3486) versus propofol for anesthetic induction and non-ICU sedation[J]. Front Pharmacol, 2023, 14: 1225288.
[3] Marik PE. Propofol: therapeutic indications and side-effects[J]. Curr Pharm Des, 2004, 10(29): 3639-3649.
[4] Kent CD, Mashour GA, Metzger NA, et al. Psychological impact of unexpected explicit recall of events occurring during surgery performed under sedation, regional anaesthesia, and general anaesthesia: data from the Anesthesia Awareness Registry[J]. Br J Anaesth, 2013, 110(3): 381-387.
[5] Cortínez LI, De la Fuente N, Eleveld DJ, et al. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis[J]. Anesth Analg, 2014, 119(2): 302-310.
[6] Wu J, Zhu SM, He HL, et al. Plasma propofol concentrations during orthotopic liver transplantation[J]. Acta Anaesthesiol Scand, 2005, 49(6): 804-810.
[7] Van Hese L, Theys T, Absalom AR, et al. Comparison of predicted and real propofol and remifentanil concentrations in plasma and brain tissue during target-controlled infusion: a prospective observational study[J]. Anaesthesia, 2020, 75(12): 1626-1634.
[8] Ferrier DC, Kiely J, Luxton R. Propofol detection for monitoring of intravenous anaesthesia: a review[J]. J Clin Monit Comput, 2022, 36(2): 315-323.
[9] Colin P, Eleveld DJ, Van den Berg JP, et al. Propofol breath monitoring as a potential tool to improve the prediction of intraoperative plasma concentrations[J]. Clin Pharmacokinet, 2016, 55(7): 849-859.
[10] Berchtold C, Bosilkovska M, Daali Y, et al. Real-time monitoring of exhaled drugs by mass spectrometry[J]. Mass Spectrom Rev, 2014, 33(5): 394-413.
[11] Zhang F, Dong H, Zhang X, et al. A non-invasive monitoring of propofol concentration in blood by a virtual surface acoustic wave sensor array[J]. Anal Sci, 2017, 33(11): 1271-1277.
[12] Dong H, Zhang FJ, Wang FY, et al. Simultaneous online monitoring of propofol and sevoflurane in balanced anesthesia by direct resistive heating gas chromatography[J]. J Chromatogr A, 2017, 1506: 93-100.
[13] Chen X, Zhang X, Liu L, et al. Gas chromatograph-surface acoustic wave for quick real-time assessment of blood/exhaled gas ratio of propofol in humans[J]. Br J Anaesth, 2014, 113(5): 807-814.
[14] Dong H, Zhang F, Chen J, et al. Evaluating propofol concentration in blood from exhaled gas using a breathing-related partition coefficient[J]. Anesth Analg, 2020, 130(4): 958-966.
[15] 董浩. 基于呼出气的在线、无创麻醉监测技术与临床应用的研究[D]. 杭州: 浙江大学, 2019.
Dong H. Research on breath testing based on-line and non-invasive anesthesia monitoring technology and its clinical applications[D]. Hangzhou: Zhejiang University, 2019.
[16] Miekisch W, Fuchs P, Kamysek S, et al. Assessment of propofol concentrations in human breath and blood by means of HS-SPME-GC-MS[J]. Clin Chim Acta, 2008, 395(1-2): 32-37.
[17] Grossherr M, Hengstenberg A, Meier T, et al. Discontinuous monitoring of propofol concentrations in expired alveolar gas and in arterial and venous plasma during artificial ventilation[J]. Anesthesiology, 2006, 104(4): 786-790.
[18] Grossherr M, Hengstenberg A, Meier T, et al. Propofol concentration in exhaled air and arterial plasma in mechanically ventilated patients undergoing cardiac surgery[J]. Br J Anaesth, 2009, 102(5): 608-613.
[19] Maurer F, Geiger M, Volk T, et al. Validation of liquid and gaseous calibration techniques for quantification of propofol in breath with sorbent tube Thermal Desorption System GC-MS[J]. J Pharm Biomed Anal, 2017, 143: 116-122.
[20] Hornuss C, Dolch ME, Janitza S, et al. Determination of breath isoprene allows the identification of the expiratory fraction of the propofol breath signal during real-time propofol breath monitoring[J]. J Clin Monit Comput, 2013, 27: 509-516.
[21] Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients[J]. Anesthesiology, 2007, 106(4): 659-664.
[22] Grossherr M, Varadarajan B, Dibbelt L, et al. Time course of ethanol and propofol exhalation after bolus injection using ion molecule reaction-mass spectrometry[J]. Anal Bioanal Chem, 2011, 401(7): 2063-2067.
[23] Hornuss C, Praun S, Villinger J, et al. Real-time monitoring of propofol in expired air in humans undergoing total intravenous anesthesia[J]. Anesthesiology, 2007, 106(4): 665-674.
[24] Hornuss C, Wiepcke D, Praun S, et al. Time course of expiratory propofol after bolus injection as measured by ion molecule reaction mass spectrometry[J]. Anal Bioanal Chem, 2012, 403(2): 555-561.
[25] Boshier PR, Cushnir JR, Mistry V, et al. On-line, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: a feasibility study[J]. Analyst, 2011, 136(16): 3233-3237.
[26] Gong X, Shi S, Zhang D, et al. Quantitative analysis of exhaled breath collected on filter substrates via low-temperature plasma desorption/ionization mass spectrometry[J]. J Am Soc Mass Spectrom, 2022, 33(8): 1518-1529.
[27] Perl T, Carstens E, Hirn A, et al. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry[J]. Br J Anaesth, 2009, 103(6): 822-827.
[28] Carstens E, Hirn A, Quintel M, et al. On-line determination of serum propofol concentrations by expired air analysis[R]. Springer, 2010.
[29] Müller-Wirtz LM, Maurer F, Brausch T, et al. Exhaled propofol concentrations correlate with plasma and brain tissue concentrations in rats[J]. Anesth Analg, 2021, 132(1): 110-118.
[30] Teucke T, Maurer F, Müller-Wirtz LM, et al. Humidity and measurement of volatile propofol using MCC-IMS (EDMON)[J]. J Clin Monit Comput, 2023, 37(2): 493-500.
[31] Maurer F, Walter L, Geiger M, et al. Calibration and validation of a MCC/IMS prototype for exhaled propofol online measurement[J]. J Pharm Biomed Anal, 2017, 145: 293-297.
[32] Kreuder AE, Buchinger H, Kreuer S, et al. Characterization of propofol in human breath of patients undergoing anesthesia[J]. Int J Ion Mobil Spectrom, 2011, 14: 167-175.
[33] Buchinger H, Kreuer S, Hellbrück R, et al. Minimal retarded propofol signals in human breath using ion mobility spectrometry[R]. Springer, 2013.
[34] Hüppe T, Kreuer S, Wulf H, et al. Quantification of exhaled propofol is not feasible during single-lung ventilation using double-lumen tubes: a multicenter prospective observational trial[J]. Acta Anaesthesiol Scand, 2023, 67(4): 455-461.
[35] Li X, Chang P, Liu X, et al. A preclinical study on online monitoring of exhaled ciprofol concentration by the ultraviolet time-of-flight spectrometer and prediction of anesthesia depth in beagles[J]. J Pharm Biomed Anal, 2023, 235: 115621.
[36] Heiderich S, Ghasemi T, Dennhardt N, et al. Correlation of exhaled propofol with Narcotrend index and calculated propofol plasma levels in children undergoing surgery under total intravenous anesthesia-an observational study[J]. BMC Anesthesiol, 2021, 21(1): 161.
[37] Liu Y, Gong Y, Wang C, et al. Online breath analysis of propofol during anesthesia: clinical application of membrane inlet-ion mobility spectrometry[J]. Acta Anaesthesiol Scand, 2015, 59(3): 319-328.
[38] Zhou Q, Wang W, Cang H, et al. On-line measurement of propofol using membrane inlet ion mobility spectrometer[J]. Talanta, 2012, 98: 241-246.
[39] Zhou Q, Li E, Wang Z, et al. Time-resolved dynamic dilution introduction for ion mobility spectrometry and its application in end-tidal propofol monitoring[J]. J Breath Res, 2015, 9(1): 016002.
[40] Zhou Q, Hua L, Wang C, et al. Improved analytical performance of negative 63Ni ion mobility spectrometry for on-line measurement of propofol using dichloromethane as dopant[J]. J Am Soc Mass Spectrom, 2015, 26(1): 190-193.
[41] Jiang D, Li E, Zhou Q, et al. Online monitoring of intraoperative exhaled propofol by acetone-assisted negative photoionization ion mobility spectrometry coupled with time-resolved purge introduction[J]. Anal Chem, 2018, 90(8): 5280-5289.
[42] Jiang D, Wang X, Chen C, et al. Dopant-assisted photoionization positive ion mobility spectrometry coupled with time-resolved purge introduction for online quantitative monitoring of intraoperative end-tidal propofol[J]. Anal Chim Acta, 2018, 1032: 83-90.
[43] Jiang D, Chen C, Wang X, et al. Online monitoring of end-tidal propofol in balanced anesthesia by anisole assisted positive photoionization ion mobility spectrometer[J]. Talanta, 2020, 211: 120712.
[44] Jiang D, Chen C, Wang W, et al. Breath-by-breath measurement of intraoperative propofol by unidirectional anisole-assisted photoionization ion mobility spectrometry via real-time correction of humidity[J]. Anal Chim Acta, 2021, 1150: 338223.
[45] Yan M, Zhang N, Li X, et al. Integrating post-ionization separation via differential mobility spectrometry into direct analysis in real time mass spectrometry for toy safety screening[J]. Anal Chem, 2023, 96(1): 265-271.
[46] Li Y, Jiang D, Zhao K, et al. Real-time continuous measurement of intraoperative trace exhaled propofol by planar differential mobility spectrometry[J]. Anal Methods, 2021, 13(23): 2624-2630.
[47] Maurer F, Lorenz D, Pielsticker G, et al. Adherence of volatile propofol to various types of plastic tubing[J]. J Breath Res, 2017, 11(1): 016009.
[48] Lorenz D, Maurer F, Trautner K, et al. Adhesion of volatile propofol to breathing circuit tubing[J]. J Breath Res, 2017, 11(3): 036005.
[49] Grossherr M, Hengstenberg A, Dibbelt L, et al. Blood gas partition coefficient and pulmonary extraction ratio for propofol in goats and pigs[J]. Xenobiotica, 2009, 39(10): 782-787.
[50] Harrison GR, Critchley AD, Mayhew CA, et al. Real-time breath monitoring of propofol and its volatile metabolites during surgery using a novel mass spectrometric technique: a feasibility study[J]. Br J Anaesth, 2003, 91(6): 797-799.
[51] ?paněl P, Smith D. Progress in SIFT-MS: breath analysis and other applications[J]. Mass Spectrom Rev, 2011, 30(2): 236-267.
[52] 刘伟,赵潇,傅扬. 医疗机器人研究、应用现状及发展趋势[J]. 中国医疗设备, 2023, 38(12): 170-175.
Liu W, Zhao X, Fu Y. Research, application status and development trend of medical robot[J]. China Med Devices, 2023, 38(12): 170-175.
[53] 吴琳,石岩,范医鲁,等. 中国临床工程行业发展历程及趋势探究[J]. 中国医疗设备, 2024, 39(4): 1-7.
Wu L, Shi Y, Fan YL, et al. Research on development process and trend of clinical engineering industry in China[J]. China Med Devices, 2024, 39(4): 1-7.

基金

浙江省自然科学基金(LY23H090015);医疗服务与 保障能力提升-麻醉临床重点专科(2021-LCZDZK-01)。

PDF(1390 KB)

21

Accesses

0

Citation

Detail

段落导航
相关文章

/