中图分类号:
R197.39
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Alexander DC, Dyrby TB, Nilsson M, et al. Imaging brain microstructure with diffusion MRI: practicality and applications[J]. NMR Biomed, 2019, 32(4): e3841.
[2] 孙海峰, 王锐. 功能磁共振成像仪评估运动疲劳后大脑皮质的激活状态[J]. 中国医疗设备, 2022, 37(5): 95-99.
Sun HF, Wang R. Evaluation of activation state of cerebral cortex after exercise fatigue by functional magnetic resonance imaging[J]. China Med Devices, 2022, 37(5): 95-99.
[3] Slipsager JM, Glimberg SL, Sogaard J, et al. Quantifying the financial savings of motion correction in brain MRI: a model-based estimate of the costs arising from patient head motion and potential savings from implementation of motion correction[J]. J Magn Reson Imaging, 2020, 52(3): 731-738.
[4] 曲源, 路青, 蒋杰. 磁共振成像运动伪影控制方法及技术进展[J]. 中国医疗设备, 2022, 37(11): 164-169.
Qu Y, Lu Q, Jiang J. Correction methods and technology progress of magnetic resonance imaging motion artifacts[J]. China Med Devices, 2022, 37(11): 164-169.
[5] Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures[J]. Radiology, 1989, 173(1): 255-263.
[6] Fu ZW, Wang Y, Grimm RC, et al. Orbital navigator echoes for motion measurements in magnetic resonance imaging[J]. Magn Reson Med, 1995, 34(5): 746-753.
[7] Welch EB, Manduca A, Grimm RC, et al. Spherical navigator echoes for full 3D rigid body motion measurement in MRI[J]. Magn Reson Med, 2002, 47(1): 32-41.
[8] Pipe JG. Motion correction with propeller MRI: application to head motion and free-breathing cardiac imaging[J]. Magn Reson Med, 1999, 42(5): 963-969.
[9] Feng L, Axel L, Chandarana H, et al. XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing[J]. Magn Reson Med, 2016, 75(2): 775-788.
[10] Delattre BM, Heidemann RM, Crowe LA, et al. Spiral demystified[J]. Magn Reson Imaging, 2010, 28(6): 862-881.
[11] Ooi MB, Krueger S, Thomas WJ, et al. Prospective real-time correction for arbitrary head motion using active markers[J]. Magn Reson Med, 2009, 62(4): 943-954.
[12] Zaitsev M, Dold C, Sakas G, et al. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system[J]. Neuroimage, 2006, 31(3): 1038-1050.
[13] Andrews-Shigaki BC, Armstrong BS, Zaitsev M, et al. Prospective motion correction for magnetic resonance spectroscopy using single camera Retro-Grate reflector optical tracking[J]. J Magn Reson Imaging, 2011, 33(2): 498-504.
[14] He X, Sun J, Wang Y, et al. Detector-free structure from motion[A]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)[C]. 2024.
[15] Qin L, Van Gelderen P, Derbyshire JA, et al. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system[J]. Magn Reson Med, 2009, 62(4): 924-934.
[16] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces[A]. Siggraph 99 Conference Proceedings[C]. 1999: 187-194.
[17] Paysan P, Knothe R, Amberg B, et al. A 3D face model for pose and illumination invariant face recognition[A]. 2009 6th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2009)[C]. Genoa, Italy, IEEE, 2009: 296-301.
[18] Cao C, Weng Y, Zhou S, et al. FaceWarehouse: a 3D facial expression database for visual computing[J]. IEEE Trans Vis Comput Graph, 2014, 20(3): 413-428.
[19] Zhu X, Liu X, Lei Z, et al. Face alignment in full pose range: a 3D total solution[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(1): 78-92.
[20] Sanyal S, Bolkart T, Feng HW, et al. Learning to regress 3D face shape and expression from an image without 3D supervision[A]. 2019 IEEE/CVP Conference on Computer Vision and Pattern Recognition: CVPR 2019[C]. Long Beach, California, USA, Institute of Electrical and Electronics Engineers, 2019: 7755-7764.
[21] Feng Y, Wu F, Shao XH, et al. Joint 3D face reconstruction and dense alignment with position map regression network[A]. Computer Vision-ECCV 2018: 15th European Conference[C]. Munich, Germany, Springer, 2018: 557-574.
[22] Li TY, Bolkart T, Black MJ, et al. Learning a model of facial shape and expression from 4D scans[J]. ACM Trans Graph, 2017, 36(6): 194.1-194.17.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金委员会重点项目(81930119);“十三五”国家重点研发计划(2017YFC0108700);北京市自然科学基金重点研究专题(Z190024);北京市科委“揭榜挂帅”项目(Z231100004823012)。
{{custom_fund}}