手持式绳驱动微创手术机器人动力学建模及夹持力估计

冯庆敏,陈钰,李帅,胡樱子,刘永志,谢勤岚,刘胜林

中国医疗设备 ›› 2025, Vol. 40 ›› Issue (4) : 32-37.

PDF(2860 KB)
PDF(2860 KB)
中国医疗设备 ›› 2025, Vol. 40 ›› Issue (4) : 32-37. DOI: 10.3969/j.issn.1674-1633.20240231
研究论著

手持式绳驱动微创手术机器人动力学建模及夹持力估计

  • 冯庆敏1,陈钰1,2,李帅1,2,胡樱子1,刘永志1,谢勤岚2,刘胜林1
作者信息 +

Dynamic Modeling and Gripping Force Estimation of Hand-Held Rope-Driven Minimally Invasive Surgical Robots

  • FENG Qingmin1, CHEN Yu1,2, LI Shuai1,2, HU Yingzi1, LIU Yongzhi1, XIE Qinlan2, LIU Shenglin1
Author information +
文章历史 +

摘要

目的 针对微创手术机器人末端器械进入人体后接收由钢丝绳传递的电机动力时,其动力学模型较难获取的问题,对绳驱动微创手术机器人动力学进行建模和仿真。方法 首先对手持微创手术机器人的绳驱动结构进行绳轮传动系统的分析,得到驱动轮力矩与从动轮力矩之间的关系,再对微创手术机器人的末端关节结构进行简化并进行动力学建模。针对建立的绳驱动微创手术机器人完整动力学模型,利用 ADAMS 对绳驱动微创手术机器人进行仿真分析和夹持力测试实验。结果 仿真结果表明,理论驱动力矩与仿真的驱动力矩基本相同。在夹持力测试实验中,将估计值与实际测量值进行对比,得出模型的最大误差为 0.265 N (1.5%),表明本研究模型在提高精度方面具有明显优势。结论 本研究模型解决了绳驱动手术机器人由于钢丝绳的特殊性质导致的建模困难等问题,为主从一体式手持手术机器人夹持力感知提供了理论基础。

Abstract

Objective To model and simulate the dynamics of minimally invasive surgical robot driven by rope, aiming at the problem that it is difficult to obtain the dynamic model when the end instruments of minimally invasive surgical robot enter the human body and transfer the power of the motor by wire rope. Methods The rope-wheel driving system of rope-driven structure of the hand-held minimally invasive surgical robot was analyzed first, and the relationship between the driving wheel torque and the driven wheel torque was obtained. Then, the end-joint structure of the minimally invasive surgical robot was simplified and the dynamic model was built. Aiming at the complete dynamic model of the rope-driven minimally invasive surgical robot, ADAMS was used to simulate the rope-driven minimally invasive surgical robot and test the gripping force. Results The simulation Results showed that the theoretical driving torque was basically same as the simulated driving torque. In the gripping force test experiment, the estimated value was compared with the actual measured value, and the maximum error of the model was 0.265 N (1.5%), indicating that this model had obvious advantages in improving the accuracy. Conclusion This model solves the modeling difficulties caused by the special properties of the rope in rope-driven surgical robots, and provides a theoretical basis for the perception of gripping force of the master-slave integrated hand-held surgical robots

关键词

微创外科手术;手持式手术机器人;动力学模型;仿真分析;绳驱动;夹持力估计

Key words

minimally invasive surgery;hand-held surgical robot;dynamic model;simulation analysis;rope drive;estimation of gripping force

引用本文

导出引用
冯庆敏,陈钰,李帅,胡樱子,刘永志,谢勤岚,刘胜林. 手持式绳驱动微创手术机器人动力学建模及夹持力估计[J]. 中国医疗设备, 2025, 40(4): 32-37 https://doi.org/10.3969/j.issn.1674-1633.20240231
FENG Qingmin,CHEN Yu,LI Shuai,HU Yingzi,LIU Yongzhi,XIE Qinlan,LIU Shenglin. Dynamic Modeling and Gripping Force Estimation of Hand-Held Rope-Driven Minimally Invasive Surgical Robots[J]. China Medical Devices, 2025, 40(4): 32-37 https://doi.org/10.3969/j.issn.1674-1633.20240231
中图分类号: R197.39   

参考文献

[1] 刘伟, 赵潇, 傅扬. 医疗机器人研究、应用现状及发展趋势[J]. 中国医疗设备, 2023, 38(12): 170-175.
Liu W, Zhao X, Fu Y. Research, application status and development trend of medical robot[J]. China Med Devices, 2023, 38(12): 170-175.
[2] Kawashima K, Kanno T, Tadano K. Robots in laparoscopic surgery: current and future status[J]. BMC Biomed Eng, 2019, 1: 12.
[3] Omisore OM, Han S, Xiong J, et al. A review on flexible robotic systems for minimally invasive surgery along with some of the technical and technological challenges hindering their prominence[J]. IEEE Trans Syst, Man, Cybern: Syst, 2022, 52(1): 631-644.
[4] 韩锦川, 王子洪, 周晟汀, 等. 达芬奇手术机器人系统的临床应用与设备管理体系的建立与实践[J]. 中国医疗设备, 2023, 38(9): 111-116.
Han JC, Wang ZH, Zhou ST, et al. Establishment and practice of clinical application and equipment management system of Da Vinci surgical robot system[J]. China Med Devices, 2023, 38(9): 111-116.
[5] 程聪, 陆马乘, 张烨. 增强现实技术在腹腔镜机器人手术的应用及研究进展[J]. 中国医疗设备, 2023, 38(9): 153-159.
Cheng C, Lu MC, Zhang Y. Research advances in augmented reality and its application in robot-assisted laparoscopic surgery[J]. China Med Devices, 2023, 38(9): 153-159.
[6] 赵婉琳, 杜孟新, 郑怡然, 等. 基于论文与专利分析的手术机器人发展态势研究[J]. 中国医疗设备, 2023, 38(8): 105-111.
Zhao WL, Du MX, Zheng YR, et al. Research on the development trend of surgical robot based on paper and patent analysis[J]. China Med Devices, 2023, 38(8): 105-111.
[7] 冯美, 李妍, 赵继, 等. 机器人辅助微创手术器械丝传动张力传递研究[J]. 机械工程学报, 2021, 57(11): 120-127.
[8] Kim CY, Lee MC, Wicker R, et al. Dynamic modeling of coupled tendon-driven system for surgical robot instrument[J]. Int J Precis Eng Manuf, 2014, 15(10): 2077-2084.
[9] Miyasaka M, Matheson J, Lewis A, et al. Measurement of the cable-pulley Coulomb and viscous friction for a cable-driven surgical robotic system[A]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)[C]. 2015: 804-810.
[10] Lee TK, Kim CY, Lee MC. Friction analysis according to pretension of laparoscopy surgical robot instrument[J]. Int J Precis Eng Manuf, 2011, 12: 259-266.
[11] Do TN, Tjahjowidodo T, Lau MWS, et al. Dynamic friction-based force feedback for tendon-sheath mechanism in NOTES system[J]. Int J Comput Electr Eng, 2014, 6(3): 252-258.
[12] 陈继朋, 陈惠贤, 杨小龙, 等. 基于放疗的六自由度医用机械臂动力学仿真分析[J]. 中国医疗设备, 2019, 34(8): 76-80.
Chen JP, Chen HX, Yang XL, et al. Dynamic simulation analysis of six-degree of freedom medical robotic couch for radiation therapy[J]. China Med Devices, 2019, 34(8): 76-80.
[13] 王晓菲. 基于柔性丝传动的腹腔微创手术器械设计方法研究[D]. 天津: 天津大学, 2012.
Wang XF. Mechanism of minimally invasive surgery device with cable transmission[D]. Tianjin: Tianjin University, 2012.
[14] 邹水中. 微创手术机器人从手系统控制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. Zou SZ. Research on control of slave system of minimally invasive surgical robot[D]. Harbin: Harbin Institute of Technology, 2019.
[15] Jung JH, Pan N, Kang TJ. Tension transmission via an elastic rod gripped by two circular-edged plates[J]. Int J Mech Sci, 2007, 49(10): 1095-1103.
[16] Wang W, Yu L, Yang J. Toward force detection of a cable-driven micromanipulator for a surgical robot based on disturbance observer[J]. Mech Sci, 2017, 8(2): 323-335.
[17] 汪凌峰. 微创外科手术机器人力控制技术研究[D]. 重庆: 重庆理工大学, 2020.
Wang LF. Research on force control technology of minimally invasive surgical robot[D]. Chongqing: Chongqing University of Technology, 2020.
[18] 王文杰. 外科手术机器人位置控制和微器械力检测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
Wang WJ. Research on position control and micromanipulator external force sensing for invasive surgical robot[D]. Harbin: Harbin Engineering University, 2018.
[19] 田波, 王尧尧, 朱康武, 等. 绳驱动机械臂动力学建模及 ADAMS仿真研究[J]. 机电工程, 2019, 36(8): 803-808.
Tian B, Wang YY, Zhu KW, et al. Dynamics modeling and ADAMS simulation of cable-driven manipulator[J]. Mech Electr Eng Mag, 2019, 36(8): 803-808.
[20] 薛人峰. 微型腹腔手术机器人丝传动传输特性及夹持力估计研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Xun RF. Research on cable transmission characteristics and estimation of grasping force in miniature laparoscope surgical robot[D]. Harbin: Harbin Institute of Technology, 2018.

基金

国家重点研发计划 (2022YFC2407306);湖北省重点研发计划 (2022BCA025)。

PDF(2860 KB)

84

Accesses

0

Citation

Detail

段落导航
相关文章

/