基于加权字典学习方法的低剂量CT图像重建

章程1,张健2,杜强1,李铭1,刘景鑫3

中国医疗设备 ›› 2018, Vol. 33 ›› Issue (6) : 12-15.

PDF(2124 KB)
PDF(2124 KB)
中国医疗设备 ›› 2018, Vol. 33 ›› Issue (6) : 12-15. DOI: 10.3969/j.issn.1674-1633.2018.06.003
专论

基于加权字典学习方法的低剂量CT图像重建

  • 章程1,张健2,杜强1,李铭1,刘景鑫3
作者信息 +

Low-Dose CT Reconstruction via Weighted Dictionary Learning Method

  • ZHANG Cheng1, ZHANG Jian2, DU Qiang1, LI Ming1, LIU Jingxin3
Author information +
文章历史 +

摘要

为了减轻X射线辐射对病患的危害,CT扫描设备的设计需要考虑降低辐射剂量的需求。源于压缩感知理论的字典 学习重建算法可用于求解不完备投影数据的CT图像重建问题,然而该算法的正则约束项无法有效区分噪声和低对比度信 息,重建图像容易丢失软组织边缘细节信息。本文提出一种加权字典学习重建算法,基于每次迭代的结果,利用字典稀疏 表示的残差设计正则约束项的权重因子,使算法在迭代过程中对图像不同区域施加不同程度的平滑效应,从而在平滑噪声 的同时保留低对比度信息。实验结果表明,提出的改进算法有效的保留了软组织边缘信息,与原算法相比,明显提高了重 建图像的质量。

Abstract

To prevent the patients from the overdose of X-ray radiation, the radiation dose should be reduced in the design of the CT scanning device. The dictionary learning reconstruction algorithm, which is derived from the compressed sensing theory, is able to make high quality recovery from the under-sampled scanning data. However, the regularization term of this algorithm is not able to distinguish the noise and the low-contrast information, tending to lose the soft tissue edge details. This article proposed a weighted dictionary learning method, which calculated the weight factors of the regularization term based on the residuals of the image patches by subtracting the dictionary sparse representation after each iterative step. The weight factors helped preserve structural information of the image and smooth the noise during the iterative process by changing the smooth effects upon different regions of the image. The corresponding experiments proves that the proposed algorithm preserves the soft tissue edge details efficiently. The quality of the reconstruction image is improved compared with the existing dictionary learning method.

关键词

图像处理 / CT重建 / 字典学习 / 权重因子 / 欠采样

Key words

image processing / CT reconstruction / dictionary learning / weight factor / under-sampled

引用本文

导出引用
章程, 张健, 杜强, . 基于加权字典学习方法的低剂量CT图像重建[J]. 中国医疗设备, 2018, 33(6): 12-15 https://doi.org/10.3969/j.issn.1674-1633.2018.06.003
ZHANG Cheng, ZHANG Jian, DU Qiang, et al. Low-Dose CT Reconstruction via Weighted Dictionary Learning Method[J]. China Medical Devices, 2018, 33(6): 12-15 https://doi.org/10.3969/j.issn.1674-1633.2018.06.003
中图分类号: O434.1    TP391   

参考文献

[1] De gonzález AB,Mahesh M,Kim K,et al.Projected cancer risks from computed tomographic scans performed in the United States in 2007[J].Arch Intern Med,2009,169(22):2071-2077.

基金

国家重点研发计划(2016YFC0103500);江苏省自然 科学基金项目(BK20170392,BK20151232);中国科学院青年 创新促进会 (2014281)。

PDF(2124 KB)

Accesses

Citation

Detail

段落导航
相关文章

/