目的 通过对脑机接口领域的专利引文网络分析探讨技术发展主路径。方法 构建脑机接口领域的专利引文网络,采用搜索路径连接数计算遍历权重,采用全局搜索与局部搜索2种路径搜索方式对该领域的全局主路径、全局关键路径主路径、局部前向主路径、局部后向主路径及局部关键路径主路径进行分析,探索该领域的技术发展轨迹。结果 脑机接口领域共有专利申请15519项,包含专利引文140691件,专利申请数量逐年增长。技术开发聚焦于神经刺激与调控技术、神经信号采集与处理技术、脑机接口硬件技术等方向。主路径分析显示,技术主题以电刺激为核心,强调精准的神经调控与个性化治疗。全局主路径上专利数量最多(16件),包含2条技术路线,全局关键路径主路径与全局主路径一致;局部前向主路径上有14件专利,包含1条技术路线,局部关键路径主路径与局部前向主路径一致;局部后向主路径上有10件专利,包含1条技术路线。结论 本研究通过脑机接口领域的专利主路径分析,识别技术发展轨迹,从情报学角度为脑机接口领域研发提供信息支撑。
Abstract
ObjectiveTo explore the main path of technology development based on the patent citation network in the field of brain-computer interface (BCI). Methods The patent citation network in the field of brain-computer interface was constructed, and the traversal weights were calculated by the search path link count. The global main path, global key-route main path, local forward main path, local backward main path and local key-route main path were analyzed by two path search methods, global search and local search, so as to explore the technological development trajectory in this field of BCI. Results There were 15519 patent applications in the field of BCI, including 140691 patent citations, and the number of patent applications increased year by year. Technology development focused on neural stimulation and regulation technology, neural signal acquisition and processing technology, BCI hardware technology and other directions. The main path analysis showed that the technical theme was electrical stimulation as the core, emphasizing precise neural regulation and personalized treatment. The number of patents on the global main path was the largest (16), including 2 technical routes, and the global key-route main path was consistent with the global main path. There were 14 patents on the local forward main path, including 1 technical route, and the local key-route main path was consistent with the local forward main path. There were 10 patents on the local backward main path, including 1 technical route. Conclusion Through the main path analysis of patents in the field of BCI, this study identifies the technological development trajectory and provides information support for the research and development of BCI from the perspective of information science.
关键词
脑机接口;主路径分析;专利分析;专利引文网络;搜索路径连接数算法
{{custom_keyword}} /
Key words
brain-computer interface (BCI); main path analysis; patent analysis; patent citation network; search path link count (SPLC)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Abiri R, Borhani S, Sellers EW, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. J Neural Eng, 2019, 16(1): 011001.
[2] Altaheri H, Muhammad G, Alsulaiman M, et al. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Comput Appl, 2023, 35(20): 14681-14722.
[3] Chaudhary U, Birbaumer N, Ramos-Murguialday A. Braincomputer interfaces for communication and rehabilitation[J]. Nat Rev Neurol, 2016, 12(9): 513-525.
[4] Houssein EH, Hammad A, Ali AA. Human emotion recognition from EEG-based brain-computer interface using machine learning: a comprehensive review[J]. Neural Comput Appl, 2022, 34(15): 12527-12557.
[5] Liu JS, Lu LYY. An integrated approach for main path analysis: development of the Hirsch index as an example[J]. J Assoc Inf Sci Tech, 2012, 63(3): 528-542.
[6] Liu JS, Chen H, Ho MH, et al. Citations with different levels of relevancy: tracing the main paths of legal opinions[J]. J Assoc Inf Sci Tech, 2014, 65(12): 2479-2488.
[7] Liu JS, Lu LYY, Ho MH. A note on choosing traversal counts in main path analysis[J]. Scientometrics, 2020, 124(1): 783-785.
[8] 张婷, 徐东紫, 陈娟, 等. 基于专利引文网络的合成生物学领 域主路径分析[J]. 中国药业, 2023, 32(22): 17-24.
Zhang T, Xu DZ, Chen J, et al. Main path analysis in the field of synthetic biology based on patent citation network[J]. China Pharma, 2023, 32(22): 17-24.
[9] Zhang T, Chen J, Jia X. Identification of the key fields and their key technical points of oncology by patent analysis[J]. PLoS One, 2015, 10(11): e0143573.
[10] Zhang T, Chen J, Lu Y, et al. Identification of technology frontiers of artificial intelligence-assisted pathology based on patent citation network[J]. PLoS One, 2022, 17(8): e0273355.
[11] Kuan C. Regarding weight assignment algorithms of main path analysis and the conversion of arc weights to node weights[J]. Scientometrics, 2020, 124(1): 775-782.
[12] 张婷, 陈娟, 徐东紫, 等. 基于发明专利的全球医用传感器技 术开发态势研究[J]. 中国医疗设备, 2023, 38(6): 8-16.
Zhang T, Chen J, Xu DZ, et al. Study on technological development status of global medical sensors based on invention patents[J]. China Med Devices, 2023, 38(6): 8-16.
[13] Adcock R, Dickerson K, MacInnes J, et al. Cognitive neurostimulation: volitional regulation of ventral tegmental area[J]. Biol Psychiat, 2019, 85(10): S60.
[14] Nissi J, Kangasmaa O, Kataja J, et al. In vivo and dosimetric investigation on electrical vestibular stimulation with frequency- and amplitude-modulated currents[J]. J Neural Eng, 2024, 21(4).
[15] Ramadan RA, Vasilakos AV. Brain computer interface: control signals review[J]. Neurocomputing, 2017, 223: 26-44.
[16] Naseer N, Niazi IK, Santosa H. Signal processing for brain-computer interfaces-special issue[J]. Sensors (Basel), 2024, 24(4): 1201.
[17] Wang J, Wang T, Liu H, et al. Flexible electrodes for braincomputer interface system[J]. Adv Mater, 2023, 35(47): e2211012.
[18] Lin S, Jiang J, Huang K, et al. Advanced electrode technologies for noninvasive brain-computer interfaces[J]. ACS Nano, 2023, 17(24): 24487-24513.
[19] Wang Z, Cao C, Chen L, et al. Multimodal neural response and effect assessment during a BCI-based neurofeedback training after stroke[J]. Front Neurosci, 2022, 16: 884420.
[20] Hosseini M, Tran TX, Pompili D, et al. Multimodal data analysis of epileptic EEG and rs-fMRI via deep learning and edge computing[J]. Artif Intell Med, 2020, 104: 101813
[21] Shi J, Tang J, Lu Z, et al. A brain topography graph embedded convolutional neural network for EEG-based motor imagery classification[J]. Biomed Signal Proces, 2024, 95: 106401.
[22] Drebitz E, Schledde B, Kreiter AK, et al. Optimizing the yield of multi-unit activity by including the entire spiking activity[J]. Front Neurosci, 2019, 13: 83.
[23] Chen R, Xu G, Pei J, et al. Typical stochastic resonance models and their applications in steady-state visual evoked potential detection technology[J]. Expert Syst Appl, 2023, 225: 120141.
[24] Cardona-Alvarez YN, Alvarez-Meza AM, Cardenas-Pena DA, et al. A novel open BCI framework for EEG-based neurophysiological experiments[J]. Sensors (Basel), 2023, 23(7): 3763.
[25] Chen D, Zhao Z, Zhang S, et al. Evolving therapeutic landscape of intracerebral hemorrhage: emerging cutting-edge advancements in surgical robots, regenerative medicine, and neurorehabilitation techniques[J]. Transl Stroke Res, 2024.
[26] Yang B, Zhang F, Cheng F, et al. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury[J]. Cell Death Dis, 2020, 11(6): 439.
[27] Aggarwal S, Chugh N. Ethical implications of closed loop brain device: 10-year review[J]. Mind Mach, 2020, 30(1): 145-170.
[28] Belkacem AN, Jamil N, Khalid S, et al. On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders[J]. Front Hum Neurosci, 2023, 17: 1085173.
[29] Oxley TJ. The promise of endovascular neurotechnology: a brain-computer interface to restore autonomy to people with motor impairment[J]. Am J Phys Med Rehabil, 2024, 103(6): 465-470.
[30] Brannigan J, Fry A, Opie NL, et al. Endovascular braincomputer interfaces in poststroke paralysis[J]. Stroke, 2024, 55(2): 474-483.
[31] Nierhaus T, Vidaurre C, Sannelli C, et al. Immediate brain plasticity after one hour of brain-computer interface (BCI)[J]. J Physiol, 2021, 599(9): 2435-2451.
[32] Li D, Wang J, Xu J, et al. Cross-channel specific-mutual feature transfer learning for motor imagery EEG signals decoding[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(10): 13472-13482.
[33] 肖峰. 脑机接口技术的发展现状、难题与前景[J]. 人民论 坛, 2023(16): 34-39.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
中国医学科学院医学与健康科技创新工程“医学知识管理与智能化知识服务关键技术研究”(2021-I2M-1-056);国家自然科学基金(L1924064);中国科协创新战略研究院项目(HD2024008)。
{{custom_fund}}