生物支架与细胞移植在脊髓损伤修复中的研究进展

王春庆

中国医疗设备 ›› 2025, Vol. 40 ›› Issue (3) : 146-153.

PDF(1682 KB)
PDF(1682 KB)
中国医疗设备 ›› 2025, Vol. 40 ›› Issue (3) : 146-153. DOI: 10.3969/j.issn.1674-1633.20232172
综述

生物支架与细胞移植在脊髓损伤修复中的研究进展

  • 王春庆
作者信息 +

Advances in Biological Scaffolding and Cell Transplantation in Spinal Cord Injury Repair

  • WANG Chunqing
Author information +
文章历史 +

摘要

脊髓损伤是脊柱骨折的严重并发症,同时也是外伤引起的神经损伤性疾病,可致损伤部位以下运动、感觉、括约肌、自主神经功能障碍,导致严重残疾。目前虽然脊柱内固定技术非常成熟,但针对脊髓损伤恢复的治疗方法有限,且疗效不确切。研究发现,细胞移植在一定程度上可提高神经再生潜能,促进神经系统功能恢复;将移植的细胞负载于生物支架上再一起移植于损伤部位,可显著提高细胞移植后的存活率,促进脊髓损伤恢复。但不同的组合治疗方法对脊髓损伤的修复程度存在差异,选择适宜的组合治疗方法对促进脊髓损伤后功能的恢复具有重要价值。本文就生物支架与细胞移植在脊髓损伤修复中的作用进行综述,总结目前生物工程技术和细胞移植相结合的研究进展,以期为临床研究和进一步的基础研究提供文献资料,并为其在脊髓损伤修复中的开发与应用提供新的思路。

Abstract

Spinal cord injury is a serious complication of spinal fracture. It is a trauma-induced neurological disorder, which can cause motor, sensory, sphincter and autonomic nerve dysfunction below the injury site, leading to severe disability. At present, although the technology of spinal internal fixation is very mature, the treatment methods for the recovery of spinal cord injury are limited and the efficacy is not exact. Research has found that cell transplantation can, to a certain extent, increase the regenerative potential of the nerve and promote the recovery of the nervous system, and the combination of transplanted cells loaded on a biological scaffold and transplanted together at the injury site can significantly increase the survival rate of the cells after transplantation and promote the recovery of spinal cord injury. However, there are differences in the degree of repair of spinal cord injury between different combination treatments, and the selection of an appropriate combination treatment is of great value in promoting the recovery of spinal cord function after injury. This article provided a review of the role of biological scaffold and cell transplantation in the repair of spinal cord injury, and summarized the current research progress of the combination of bioengineering technology and cell transplantation, aiming to provide literature information for clinical research and further basic research, and offering new ideas for the development and application of these approaches in the repair of spinal cord injury.

关键词

生物支架;细胞移植;脊髓损伤修复;干细胞移植;神经再生;组织工程

Key words

biological scaffold; cell transplantation; spinal cord injury repair; stem cell transplantation; nerve regeneration; tissue engineering

引用本文

导出引用
王春庆. 生物支架与细胞移植在脊髓损伤修复中的研究进展[J]. 中国医疗设备, 2025, 40(3): 146-153 https://doi.org/10.3969/j.issn.1674-1633.20232172
WANG Chunqing. Advances in Biological Scaffolding and Cell Transplantation in Spinal Cord Injury Repair[J]. China Medical Devices, 2025, 40(3): 146-153 https://doi.org/10.3969/j.issn.1674-1633.20232172
中图分类号: R651.2   

参考文献

[1] 万然, 史旭, 刘京松, 等. 间充质干细胞分泌组治疗脊髓损伤 的研究进展[J]. 中国组织工程研究, 2021, 25(7): 1088-1095.
Wan R, Shi X, Liu JS, et al. Research progress in the treatment of spinal cord injury with mesenchymal stem cell secretome[J]. Chin J Tissue Eng Res, 2021, 25(7): 1088-1095.
[2] 刘胜文, 王煜, 雷霆. 神经干细胞移植治疗脊髓损伤研究新进 展[J]. 神经损伤与功能重建, 2021, 16(1): 27-28.
[3] Pereno V, Lei J, Carugo D, et al. Microstreaming inside model cells induced by ultrasound and microbubbles[J]. Langmuir, 2020, 36(23): 6388-6398.
[4] Chen W, Zhang Y, Yang S, et al. NeuroRegen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: a 3-year clinical study[J]. Cell Transplant, 2020, 29: 963689720950637.
[5] Gao H, Di J, Clausen BH, et al. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders[J]. Cell Rep, 2023, 42(7): 339-352.
[6] 李涛, 谭龙旺. 生物支架联合干细胞移植治疗脊髓损伤的研 究进展[J]. 广西医学, 2022, 44(23): 2793-2797.
[7] 李长明, 邵荣学, 邓小梅, 等. 尿液细胞来源iPSCs-NSCs联合 3D打印支架移植修复大鼠急性脊髓损伤的研究[J]. 浙江医 学, 2021, 43(3): 238-243.
Li CM, Shao RX, Deng XM, et al. Three-dimensional scaffolds seeded with iPSCs-NSCs derived from urine cell for repair of acute spinal cord injury in rats[J]. Zhejiang Med J, 2021, 43(3): 238-243.
[8] Han S, Xiao Z, Li X, et al. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine[J]. Sci China Life Sci, 2018, 61(1): 2-13.
[9] Kadoya K, Lu P, Nguyen K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration[J]. Nat Med, 2016, 22(5): 479-487.
[10] Yin W, Li X, Zhao Y, et al. Taxol-modified collagen scaffold implantation promotes functional recovery after long-distance spinal cord complete transection in canines[J]. Biomater Sci, 2018, 6(5): 1099-1108.
[11] 胡楠, 宋国齐, 邹琳清. Hes基因对神经干细胞发育的调控作 用的研究进展[J]. 神经解剖学杂志, 2020, 36(6): 689-692.
[12] 张浩, 肖世宁, 张钰, 等. 内源性神经干细胞在脊髓损伤修复 的研究进展[J]. 中国矫形外科杂志, 2022, 30(24): 2250-2254.
Zhang H, Xiao SN, Zhang Y, et al. Research progress in endogenous neural stem cells in spinal cord injury repair[J]. Orthop J China, 2022, 30(24): 2250-2254.
[13] 杨昊南, 刘玲, 于才勇, 等. 神经干细胞移植治疗脊髓损伤 的临床研究现状及存在的问题[J]. 中国脊柱脊髓杂志, 2020, 30(9): 846-851.
Yang HN, Liu L, Yu CY, et al. Clinical study of neural stem cells in the treatment of spinal cord injury and its problems[J]. Chin J Spine Spinal Cord, 2020, 30(9): 846-851.
[14] 何宇祺, 王洪超, 李青. 脊髓损伤后内源性神经干细胞激活 机制的研究进展[J]. 中国脊柱脊髓杂志, 2019, 29(3): 279-283.
He YQ, Wang HC, Li Q. Current progress for the mechanism of activation of endogenous neural stem cells after spinal cord injury[J]. Chin J Spine Spinal Cord, 2019, 29(3): 279-283.
[15] Zhang JJ, Zhu JJ, Hu YB, et al. Transplantation of bFGFexpressing neural stem cells promotes cell migration and functional recovery in rat brain after transient ischemic stroke[J]. Oncotarget, 2017, 8(60): 102067-102077.
[16] Wang YT, Yuan H. Research progress of endogenous neural stem cells in spinal cord injury[J]. Ibrain, 2022, 8(2): 199-209.
[17] Liu Q, Zhou S, Wang X, et al. A peli n alle viate d neuroinflammation and promoted endogenous neural stem cell proliferation and differentiation after spinal cord injury in rats[J]. J Neuroinflammation, 2022, 19(1): 160.
[18] Wang L, Gu S, Gan J, et al. Neural stem cells overexpressing nerve growth factor improve functional recovery in rats following spinal cord injury via modulating microenvironment and enhancing endogenous neurogenesis[J]. Front Cell Neurosci, 2021, 15: 773375.
[19] Gilbert EAB, Lakshman N, Lau KSK, et al. Regulating endogenous neural stem cell activation to promote spinal cord injury repair[J]. Cells, 2022, 11(5): 846.
[20] 刘明昊, 于才勇, 刘玲, 等. 骨髓间充质干细胞治疗脊髓损伤 应用方法的多样性[J]. 医学综述, 2021, 27(2): 226-232.
Liu MH, Yu CY, Liu L, et al. Diversity of application methods of bone marrow mesenchymal stem cells in treatment of spinal cord injury[J]. Med Recapitul, 2021, 27(2): 226-232.
[21] 董万亮. 骨髓间充质干细胞来源的外泌体通过TSG-6通路促 进脊髓损伤修复的作用及机制研究[D]. 郑州: 郑州大学, 2020.
[22] 田晓波. 脂肪间充质干细胞通过调控Notch信号通路在脊髓 损伤修复中的作用及机制[D]. 广州: 南方医科大学, 2021.
[23] 吉明明, 常峰, 高刚, 等. 骨髓间充质干细胞在脊髓损伤中的 作用研究[J]. 河北医药, 2020, 42(19): 2990-2994.
Ji MM, Chang F, Gao G, et al. The role of bone marrow mesenchymal stem cells in spinal cord injury[J]. Hebei Med J, 2020, 42(19): 2990-2994.
[24] 孔德胜, 何晶晶, 冯宝峰, 等. 间充质干细胞修复大动物模型 脊髓损伤疗效评价的Meta分析[J]. 中国组织工程研究, 2021, 25(7): 1142-1148.
Kong DS, He JJ, Feng BF, et al. Efficacy of mesenchymal stem cells in the spinal cord injury of large animal models: a Metaanalysis[J]. Chin J Tissue Eng Res, 2021, 25(7): 1142-1148.
[25] Reshamwala R, Murtaza M, Chen M, et al. Designing a clinical trial with olfactory ensheathing cell transplantationbased therapy for spinal cord injury: a position paper[J]. Biomedicines, 2022, 10(12): 3153.
[26] 王国毓, 程志坚, 杨宝辉, 等. 嗅鞘细胞移植促进脊髓损伤模 型大鼠修复损伤区组织的超微结构特征[J]. 中国组织工程研 究, 2020, 24(5): 699-703.
Wang GY, Cheng ZJ, Yang BH, et al. Olfactory ensheathing cell transplantation promotes the ultrastructure repair at the lesion site of rat models of spinal cord injury[J]. Chin J Tissue Eng Res, 2020, 24(5): 699-703.
[27] Azizi F, Ghasemi R, EbrahimiBarough S, et al. Effect of multifactorial therapeutic approach on axonal regeneration and cell viability in an in-vitro model of spinal-derived neural injury[J]. Cell Tissue Bank, 2023, 24(2): 471-484.
[28] 王晓玉. 嗅鞘细胞促进脊髓损伤修复及机制研究[D]. 济南: 山东大学, 2022.
Wang XY. Treating spinal cord injury by olfactory ensheathing cells and the mechianisms[D]. Jinan: Shandong University, 2022.
[29] Shen Y, Wang YP, Cheng X, et al. Autophagy regulation combined with stem cell therapy for treatment of spinal cord injury[J]. Neural Regen Res, 2023, 18(8): 1629-1636.
[30] Li H, Han B, Chen Z, et al. Spinal cord injury repair in a rat model via a sophisticated delivery system composed of schwan cells, calcium alginate hydrogel, and bellis perennis extractloaded gelatin nanofibers[J]. J Biomed Nanotechnol, 2023, 19(2): 336-341.
[31] Madigan NN, McMahon S, O’Brien T, et al. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds[J]. Respir Physiol Neurobiol, 2009, 169(2): 183-199.
[32] Song J, Lv B, Chen W, et al. Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair[J]. Int J Extrem Manuf, 2023, 5(3): 32008.
[33] Liu W, Xu B, Zhao S, et al. Spinal cord tissue engineering via covalent interaction between biomaterials and cells[J]. Sci Adv, 2023, 9(6): eade8829.
[34] Keikhaei R, Abdi E, Darvishi M, et al. Combined treatment of high-intensity interval training with neural stem cell generation on contusive model of spinal cord injury in rats[J]. Brain Behav, 2023, 13(7): e3043.
[35] Sugii S, Kida Y, Kawamura T, et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells[J]. Proc Natl Acad Sci USA, 2010, 107(8): 3558-3563.
[36] 曹宗锐, 郑博, 钟琳, 等. 胶原/硫酸肝素支架联合神经干细 胞促进脊髓损伤后运动功能的恢复[J]. 中国组织工程研究, 2019, 23(34): 5454-5461.
Cao ZR, Zheng B, Zhong L, et al. Collagen/heparin sulfate scaffold combined with neural stem cells promote motor function recovery after spinal cord injury[J]. Chin J Tissue Eng Res, 2019, 23(34): 5454-5461.
[37] 漆国栋, 江琼, 伍亚民, 等. 神经干细胞与脊髓脱细胞支架体外 共培养的可行性[J]. 中国康复理论与实践, 2021, 27(1): 71-78.
Qi GD, Jiang Q, Wu YM, et al. Co-culture of neural stem cells and spinal cord acellular scaffold in vitro[J]. Chin J Rehabil Theory Pract, 2021, 27(1): 71-78.
[38] 赵兴昌, 宋世强, 何峰, 等. 生物材料支架在治疗脊髓损伤中 的应用[J]. 中国组织工程研究, 2022, 26(28): 4562-4568.
Zhao XC, Song SQ, He F, et al. Application of biomaterial scaffolds in the treatment of spinal cord injury[J]. Chin J Tissue Eng Res, 2022, 26(28): 4562-4568.
[39] Song S, Li Y, Huang J, et al. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury[J]. Biomater Adv, 2023, 148: 213385.
[40] 孙建威, 杨新明, 安小刚. 多种方法提高骨髓间充质干细 胞移植治疗脊髓损伤的效果[J]. 中国组织工程研究, 2022, 26(13): 2075-2080.
Sun JW, Yang XM, An XG. Effects of various methods on improving bone marrow mesenchymal stem cell transplantation for spinal cord injury[J]. Chin J Tissue Eng Res, 2022, 26(13): 2075-2080.
[41] 何文丽. 脊髓脱细胞基质搭载过表达bFGF因子的脐带间充 质干细胞促进大鼠脊髓损伤修复的研究[D]. 青岛: 青岛大 学, 2022.
He WL. Spinal cord decellularized matrix scaffold loaded with engineered bFGF-overexpressed human umbilical cord mesenchymal stromal cells promoted the recovery of spinal cord injury[D]. Qingdao: Qingdao University, 2022.
[42] Ma YH, Zeng X, Qiu XC, et al. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord[J]. Biomaterials, 2018, 160: 37-55.
[43] Papa S, Vismara I, Mariani A, et al. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury[J]. J Control Release, 2018, 278: 49-56.
[44] Han IB, Thakor DK, Ropper AE, et al. Physical impacts of PLGA scaffolding on hMSCs: recovery neurobiology insight for implant design to treat spinal cord injury[J]. Exp Neurol, 2019, 320: 112980.
[45] Kim YC, Kim YH, Kim JW, et al. Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: comparative study between intralesional injection and scaffold based transplantation[J]. J Korean Med Sci, 2016, 31(9): 1373-1382.
[46] 王健豪, 刘洋, 付玄昊, 等. 3D打印组织工程支架联合骨髓 间充质干细胞移植修复脊髓损伤[J]. 中华骨科杂志, 2021, 41(6): 10.
Wang JH, Liu Y, Fu XH, et al. 3D printed tissue engineering scaffolds combined with bone marrow mesenchymal stem cells transplantation to repair spinal cord injury[J]. Chin J Orthop, 2021, 41(6): 10.
[47] Zhao Y, Tang F, Xiao Z, et al. Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury[J]. Cell Transplant, 2017, 26(5): 891-900.
[48] Zhang J, Lu X, Feng G, et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy[J]. Cell Tissue Res, 2016, 366(1): 129-142.
[49] Wang N, Xiao Z, Zhao Y, et al. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury[J]. J Tissue Eng Regen Med, 2018, 12(2): e1154-e1163.
[50] 李嘉熙, 高正超, 贺西京, 等. 嗅鞘细胞治疗脊髓损伤的研究 进展[J]. 中国骨伤, 2021, 34(8): 785-790.
Li JX, Gao ZC, He XJ, et al. Advances in olfactory ensheathing cells for the treatment of spinal cord injury[J]. China J Orthop Traumatol, 2021, 34(8): 785-790.
[51] 郭栋, 杨于冰, 贺西京, 等. 生物支架联合嗅鞘细胞移植治 疗脊髓损伤的研究进展[J]. 山西医科大学学报, 2022, 53(7): 904-910.
[52] Ji Z, Yang JH, Zhong W, et al. Grafting olfactory ensheathing cells with stereo silk nanofibers scaffolds: a novel therapy for spinal cord injury in rats[J]. J Biomater Tissue Eng, 2018, 8(8): 1106-1115.
[53] Zhu S, Ge J, Wang Y, et al. A synthetic oxygen carrierolfactory ensheathing cell composition system for the promotion of sciatic nerve regeneration[J]. Biomaterials, 2014, 35(5): 1450-1461.
[54] Sarwat M, Surrao DC, Huettner N, et al. Going beyond RGD: screening of a cell-adhesion peptide library in 3D cell culture[J]. Biomed Mater, 2020, 15(5): 55033.
[55] Wang S, Sarwat M, Wang P, et al. Hydrogels with cell adhesion peptide-decorated channel walls for cell guidance[J]. Macromol Rapid Commun, 2020, 41(15): e2000295.
[56] Wentao Z, Ya’nan H, Jian L, et al. In vitro biocompatibility study of a water-rinsed biomimetic silk porous scaffold with olfactory ensheathing cells[J]. Int J Biol Macromol, 2019, 125: 526-533.
[57] Yin H, Jiang T, Deng X, et al. A cellular spinal cord scaffold seeded with rat adipose-derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats[J]. Mol Med Rep, 2017, 17(2): 2998-3004.
[58] 崔学文, 李正南, 张志坚, 等. 纤维蛋白胶支架搭载外胚间充 质源雪旺细胞移植修复大鼠脊髓损伤[J]. 神经解剖学杂志, 2015, 31(1): 65-72.
Cui XW, Li ZN, Zhang ZJ, et al. Transplantation of fibrin scaffolds containing ectomesenchymal Schwann cells to repair the spinal cord injury in rats[J]. Chin J Neuroanat, 2015, 31(1): 65-72.
[59] 柴斌, 唐硕, 全大萍, 等. 多管道支架联合雪旺细胞移植修复 脊髓损伤[J]. 中华实验外科杂志, 2018, 35(11): 2029-2031.
Chai B, Tang S, Quan DP, et al. Repair of adult rat spinal cord injury by poly (lactic-co-glycolic acid) scaffold combined with Schwann cells transplantation[J]. Chin J Exp Surg, 2018, 35(11): 2029-2031.
[60] Li G, Che MT, Zeng X, et al. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury[J]. J Biomed Mater Res A, 2018, 106(8): 2158-2170.
[61] 赵宣淇. 神经营养因子-3基因修饰的骨髓间充质干细胞和 水凝胶联合应用对脊髓损伤模型大鼠的治疗作用研究[D]. 北京: 中国医学科学院北京协和医学院, 2020.
[62] Li G, Zhang B, Sun JH, et al. An NT-3-releasing bioscaffold supports the formation of TrkC-modified neural stem cellderived neural network tissue with efficacy in repairing spinal cord injury[J]. Bioact Mater, 2021, 6(11): 3766-3781.
[63] 刘洪伟, 杨涵, 吴娟洁, 等. 生物可吸收支架研究进展[J]. 中 国医疗设备, 2021, 36(1): 171-174.
Liu HW, Yang H, Wu JJ, et al. Research progress of bioresorbable stents[J]. China Med Devices, 2021, 36(1): 171-174.
[64] 汪美玲, 周晓辉. 心血管外介入治疗装置的研究进展[J]. 中 国医疗设备, 2023, 38(10): 160-164.
Wang ML, Zhou XH. Research progress of external cardiovascular interventional therapy device[J]. China Med Devices, 2023, 38(10): 160-164.

基金

贵州省科技厅科技项目(黔科合LH字[2015]7409号)。

PDF(1682 KB)

48

Accesses

0

Citation

Detail

段落导航
相关文章

/