磁化率传递成像在脑胶质瘤分级及瘤周浸润中的应用价值

磁化率传递成像在脑胶质瘤分级及瘤周浸润中的应用价值

何金龙1,高阳1,李波1,王少彧2,张华鹏2

1. 内蒙古医科大学附属医院 影像诊断科,内蒙古 呼和浩特 010050;2. 西门子医疗系统有限公司,上海 201318

[摘 要]目的 探讨磁化率传递成像(Magnetization Transfer Imaging,MTI)在胶质瘤分级及瘤周浸润中的应用价值。方法 搜集我院经手术治疗并经病理证实的胶质瘤患者34例,根据WHO胶质瘤分级,将其分为高级、低级别组。所有患者均行头颅常规扫描和MTI扫描。后处理得到磁化率传递比(Magnetization Transfer Ratio,MTR)图,在MTR图上分别在肿瘤实性区、水肿带、同侧和对侧正常脑实质画取大小相同感兴趣区域记录数据,采用SPSS 23.0行配对样本t检验比较各组MTR值;采用独立样本t检验比较不同级别胶质瘤MTR值。结果 与对侧正常脑白质比较,肿瘤实性区、水肿区MTR值明显降低,差异有统计学意义;高级别组胶质瘤实质区、水肿区MTR值均小于低级别组,差异有统计学意义。结论 MTI技术能定量清晰显示胶质瘤,对明确肿瘤实质区、水肿带边界有重要价值;高级别胶质瘤MTR值下降更明显,对鉴别高低级别有重要价值;MTR能较早反映胶质瘤水肿区的瘤周浸润情况,高级别胶质瘤更易发生瘤周浸润。

[关键词]磁化率传递成像;胶质瘤;胶质瘤分级;瘤周浸润

引言

磁化率传递成像(Magnetization Transfer Imaging,MTI)的磁化率传递比(Magnetization Transfer Ratio,MTR)值可定量反映脑组织的完整性,能检测组织中的自由水质子和细胞膜蛋白大分子表面的自由水质子磁化率变化的效能,任何因组织结构缺损而导致细胞膜蛋白大分子结构的改变或破坏均会引起MTR值的下降[1]。应用MTI技术能反映胶质瘤微观结构破坏程度,对胶质瘤的显示及边界确定有较大价值。目前胶质瘤的功能成像应用较多,但对于胶质瘤MTI技术的文献报道较少,本研究旨在探讨MTI技术在胶质瘤分级及瘤周浸润中的应用价值。评估瘤周浸润情况,为临床最大程度切除肿瘤提供更多证据。

1 材料和方法

1.1 临床资料

选取2018年4月至2019年4月经病理证实,并在我院接受手术治疗并经病理证实的胶质瘤患者34例,根据术后病理组织检查分为高级别组和低级别组。高级别组20例,男12例,女8例;年龄2~75岁,平均年龄(48.7±20.0)岁;低级别组14例,男10例,女4例;年龄18~75岁,平均年龄(48.9±16.7)岁。

1.2 仪器与方法

采用simenzeSkyra 3.0 T MR扫描仪行头颅常规序列(T2WI、T1WI、DWI)和MTI序列(MT-off、MT-on)扫描。MR设备下进行,采用8通道头线圈,选用快速梯度回波序列(Gradient Echo,GRE)对受试者分别行未施加和施加饱和脉冲时轴面扫描各1次,MTI序列参数:TR 35.00 ms,TE 4.92 ms,层厚3 mm,层间距0,FOV 240 mm×240 mm,偏转角25°,饱和脉冲频率1200 Hz,频宽30 Hz,全脑扫描共51层。通过simenze工作站后处理得到MTR图(MTR=(MToff-MTon)/MToff 100%,MToff和MTon分别代表关闭和开放磁化传递脉冲)[2]。在MTR图上分别在肿瘤实性区、水肿带、同侧似正常白质和对侧似正常白质画取大小相同感兴趣区域(Region Of Interest,ROI),不同ROI导致数据偏差,为了避免这一偏差,我们采用相同大小ROI。

1.3 统计学方法

采用SPSS 23.0软件进行统计分析,符合正态分布的计量资料以xs表示,两组间比较采用t检验;采用方差分析比较高低两种级别胶质瘤肿瘤实性区及水肿区MTR。P<0.05为差异有统计学意义。

2 结果

2.1 胶质瘤MTR图表现

MTR图能定量显示脑内胶质瘤,可明确胶质瘤实性部分的边界,如图1~2。病变区MTR值明显减低,伪彩图上可清晰显示实性病变区边界。

2.2 胶质瘤实变区与脑内不同区域间MTR值比较

肿瘤实变区MTR值为(10.22±2.13),对侧似正常白质MTR值为(17.57±1.31),水肿区MTR值为(13.85±1.11),同侧似正常白质MTR值为(18.11±0.40)。肿瘤实性区MTR值低于对侧似正常白质、水肿区和同侧似正常白质,差异有统计学意义(t=-17.93、-9.91、-20.23,P<0.05);肿瘤水肿区MTR值小于对侧似正常白质和同侧似正常白质,差异有统计学意义(t=-11.15、-17.04,P<0.05)。同侧似正常白质与对侧似正常白质比较,差异无统计学意义(t=1.22、P>0.05)。高低级别胶质瘤MTR伪彩图,见图3。

2.3 胶质瘤高低级别MTR值比较

高级别组胶质瘤实质区MTR值小于低级别组,差异有统计学意义(P<0.05);高级别组胶质瘤水肿区MTR值小于低级别组,差异有统计学意义(P<0.05),见表1。

图1 右额叶Ⅱ级胶质瘤

注:a. T2WI图,右侧额叶见类圆形长T2信号,边界较清;b. T1WI增强图,右额叶病变呈轻度强化;c. DWI图,病变内见稍高信号;d. MTR伪彩图,箭头所示为病变实性成分边界。

图2 胼胝体及左侧侧脑室旁Ⅳ级胶质母细胞瘤

注:a. T2WI图,胼胝体及左侧侧脑室后角旁见不规则团状长T2信号,边界不清;b. T1WI增强图,右额叶病变呈明显不均匀强化;c. DWI图,病变呈不均匀高信号;d. MTR伪彩图,箭头所示为病变实性成分边界。

图3 高低级别胶质瘤MTR伪彩图

注:a. 低级别胶质瘤,肿瘤实性区MTR值明显减低(ROI3),边缘水肿区(ROI4)MTR值略低,同侧白质区(ROI1)与对侧白质区(ROI2)MTR值相近;b. 高级别胶质瘤,肿瘤实性区MTR值明显减低(ROI1),边缘水肿区(ROI2)MTR值略低,同侧白质区(ROI3)值减低,提示白质有浸润可能,对侧白质(ROI4)MTR值正常。

表1 胶质瘤高低级别MTR值比较

分级 肿瘤区水肿区对侧似正常白质同侧似正常白质囊变区低级别 11.15 15.10 17.82 18.22 1.29高级别 9.57 13.34 17.28 17.99 3.27 t值 -2.24 -3.32 0.97 1.21 -1.67 P值 0.032 0.002 0.977 0.244 0.115

3 讨论

MTI是指自由施加偏共振射频时,大分子结合的质子被磁化饱和,自由水中的质子和与大分子结合的结合水质子之间的相互作用[2]。而通过磁化率传递(Magnetization Transfer,MT)效应将饱和效应转移到自由水的质子,而导致自由水组织信号下降[3]。MT效应可通过施加射频脉冲前后信号强度的差异进行量化,这种差异称之为MTR。通过MTR这个参数可测量组织内相关的自由水质子和那些固定在细胞膜上的蛋白大分子的磁化交换效能。脑白质受MTI效应的影响,因而理论上可通过MTR的变化评价脑白质脱髓鞘病变。有研究认为脑胶质瘤的大分子含量明显减少,而且MTI的交换率增加。脑胶质瘤可以破坏脑的正常结构并改变脑组织的含水量[4-5]。由于组织结构缺失的细胞膜大分子的任何病理变化如水肿的存在都将引起MTR值的下降[6]

胶质瘤是成人中最常见的脑原发恶性肿瘤,治疗主要依靠手术切除、放疗和化疗的联合治疗。目前评价胶质瘤的治疗反应主要依靠影像生物标记物,常用的有T1增强后和FLAIR的联合评估。更高级的技术还有动态对比增强、动态敏感增强、DWI、化学交换饱和转移、MRS、DTI、ASL等。这些影像标记物往往用在治疗后的1~3个月,这是临床应用中普遍接受的时间点,然而它们在治疗后早期或治疗期间的评估潜力尚在研究中[7]。MT技术对大分子质子的浓度和它们与自由水质子交换比较敏感,能够更早期对治疗效果做出反应,Daniel等[8]研究了8例胶质瘤患者,得出结论肿瘤MT值显著小于灰白质MT值,Xu等[9]和Hunter等[10]在鼠胶质瘤模型中也得出同样的结论。MTI对疾病组织特征分析基于两方面:一方面神经病理改变导致水分子扩散程度改变,引起该区域自由水与结合水的量及比例改变,影响MT效应;另一方面神经病理改变影响了结合水与大分子物质结合能力[11]。脑白质受MT效应的影响,因而理论上可通过MTR的变化评价脑白质脱髓鞘病变[12]。研究表明白质MTR反映的是白质髓鞘化程度,灰质MTR变化反映的是灰质的神经元数量、形态及细胞膜组成蛋白和磷脂等的变化[13]。而且,MT技术是一种非侵入性生物标记,可以在治疗早期或之前确定疗效,能提供较大的临床应用价值[14]

本研究中胶质瘤实变区、水肿区MTR值均明显小于对侧和同侧似正常白质,与Rory等[15]研究结果一致。说明MTR值对脑组织的破坏非常敏感,脑组织轻微受累MTR即明显降低,故MTR图不仅可更精确显示肿瘤边界[16]。而且可以反映原发肿瘤的白质浸润程度,这与胶质瘤水肿的浸润特点一致,肿瘤的实际边界要大于T2WI上显示的边界[17],为临床最大程度切除肿瘤提供了更丰富的信息。本研究中对高低级别的胶质瘤MTR值进行了比较,结果表明高级别胶质瘤组MTR值低于低级别胶质瘤组,提示MTI技术对于鉴别胶质瘤分级有重要价值,从微观角度反映了细胞结构的完整情况,高级别胶质瘤细胞膜结构更易破坏,结合水成分减少,MT效能减低,因而导致MTR值下降更明显。此外,高级别胶质瘤水肿区MTR值较低级别胶质瘤低,可能原因是高级别胶质瘤瘤周水肿浸润要早于低级别胶质瘤,而且对水肿区的细胞结构的完整性破坏更严重,导致MTR值更低,这一结论与Lee等[18]研究结果一致,胶质瘤的瘤周水肿含有单纯性血管源性水肿和浸润性水肿,而低级别相较于高级别瘤周水肿,血管源性水肿的比重更大,浸润性水肿比例相对较小,浸润性水肿比例越高,细胞微结构完整性越差,故MTR值相对于高级别胶质瘤略高[19-20]。本文中水肿区测量取自胶质瘤实质边缘1 cm范围内,说明胶质瘤瘤周水肿1 cm范围内浸润的发生率较高,为临床手术扩大1 cm切除肿瘤提供了佐证。

综合分析,MTI技术对胶质瘤的分级及瘤周浸润有重要的应用价值,可以定量分析肿瘤的边界及瘤周浸润范围,对临床手术扩大切除有重要意义。本研究尚存不足之处:① 样本量较小,有待后续继续增加样本量;② 未对胶质瘤瘤周水肿进行分带测量,后续将进一步探测瘤实质边缘1 cm以外瘤周水肿区,以期进一步明确胶质瘤瘤周浸润程度。

[参考文献]

[1]Silver NC,Barker GJ,MacManus DG,et al.Magnetisation transfer ratio of normal brain white matter: a normative database spanning four decades of life[J].J Neurol Neurosurg Psychiatry,1997,(62):223-228.

[2]Xu JZ,Li K,Zu ZL,et al.Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery[J].NMR Biomed,2014,27(3):253-260.

[3]Tambasco N,Nigro P,Romoli M,et al.Magnetization transfer MRI in dementia disorders,Huntington’s disease and Parkinsonism[J].J Neurol Sci,2015,353(1-2):1-8.

[4] Arlinghaus LR,Dorth RD,Whisenant JG,et al. Quantitative magnetization transfer imaging of the breast at 3.0 T: reproducibility in healthy volunteers[J].Tomography,2016,2(4):260-266.

[5]Sinha S,Bastin ME,WhittleI R,et al.Diffusion tensor MR imaging of highgrade cerebral gliomas[J].AJNR Am J Neuroradiol,2002,(23): 520-527.

[6]Nelson CM,Bissell MJ.Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis,and cancer[J].Annu Rev Cell Dev Biol,2006,22(1):287-309.

[7]Hatef M,Sten M,Hany S,et al.Quantitative magnetization transfer in monitoring glioblastoma (GBM) response to therapy[J].Sci Rep,2018,8(1):2475

[8]Daniel J,Jeremy H,Christopher E,et al.Quantitativemagnetisation transfer imaging in glioma: preliminary results[J].NMR Biomed,2011,24(5):492-498.

[9]Xu JZ,Li K,Zu ZL,et al.Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery[J].NMR in Biomedicine,2014,27(3):253-260.

[10]Hunter R,Robert CR,Andrei MM,et al.Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model[J].Neuroimage,2011,54(3):2052-2065.

[11]Garcia M,Gloor M,Bieri O,et al.Imaging of primary brain tumors and metastases with fast quantitative 3-dimensional magnetization transfer[J].J Neuroimaging,2015,25(6):1007-1014.

[12]De Stefano N,Bataglini M,Stromilo ML,et al.Brain damage as detected by magnetization transfer imaging is less pronounced in benign than in early relapsing multiple sclerosis[J].Brain,2006,129(8):2008-2016.

[13]Marta G,Dylan MN,Rhoshel KL,et al.A magnetization transfer imaging study of corpus callosum myelination in young children with autism[J].Biol Psychiatry,2012,(72):215-220.

[14]Ryken TC,Aygun N,Morris J,et al.The role of imaging in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline[J].J Neurooncol,2014,118(3):435-460.

[15]Rory JP,Shadia M,Joanna M,et al.Imaging signatures of meningioma and low-grade glioma: a diffusion tensor,magnetization transfer and quantitative longitudinal relaxation time MRI study[J].Magn Reson Imaging,2016,34(4):596-602.

[16]李志坚,赵晓东,姚雪艳,等.对比增强磁化传递在脑部磁共振成像中的应用[J].中国CT和MRI杂志,2013,11(1):22-25.

[17]De Belder FE,Oot AR,Van Hecke W,et al.Diffusion tensor imaging provides an insight into the microstructure of meningiomas, high-grade gliomas, and peritumoral edema[J].J Comput Assist Tomogr,2012,36(5):577-582.

[18]Lee EJ,Ahn KJ,Lee EK,et al.Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions[J].Clin Radiol,2013,(68):e689-697.

[19]Wang Q,Zhang H,JiaShu Z,et al.The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis[J].Eur Radiol,2016,26(8):2670-2684.

[20]Patel P,Baradaran H,Delgado D,et al.MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis[J].Neuro Oncol,2017,39(34):466-471.

Application Value of Magnetization Transfer Imaging in the Diagnosis of Intracerebral Glioma

HE Jinlong1, GAO Yang1, LI Bo1, WANG Shaoyu2, ZHANG Huapeng2

1. Department of Imaging Diagnosis, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, China;2. Siemens Healthineers, Shanghai 201318, China

Abstract: Objective To investigate the application value of magnetization transfer imaging (MTI) in glioma grading and peritumoral invasion. Methods A total of 34 patients with glioma who had undergone surgical treatment and confirmed pathology in our hospital were collected and divided into high and low grade groups according to the WHO glioma classification. All patients underwent routine head scan and MTI scan. After processing, the magnetization transfer ratio (MTR) map was obtained. On the MTR map,draw the same size region of interest (ROI) records on the solid tumor area, edema zone, ipsilateral and contralateral normal brain parenchyma. For the data, SPSS 23.0 line paired sample t-test was used to compare the MTR values of each group; independent samples t-test was used to compare the MTR values of different grades of gliomas. Results Compared with the normal white matter of the contralateral side, the MTR values of the solid tumor area and the edema area were significantly lower, and the difference was statistically significant; the MTR values of the high-grade glioma parenchymal area and the edema area were lower than the lowgrade group, and the difference was statistically significant significance. Conclusion MTI technology can quantitatively and clearly display gliomas, which is of great value for clarifying the boundaries of the tumor parenchyma and edema zone. The MTR value of high-grade gliomas decreases more significantly, which is of important value for distinguishing high and low grades, MTR can reflect glioma earlier. The peritumoral infiltration in the tumor edema area, high-grade gliomas are more prone to peritumoral infiltration.

Key words:magnetization transfer imaging; gliomas; glioma classification; tumor infiltration

[中图分类号]R445.2;R739.41

[文献标识码]A

doi:10.3969/j.issn.1674-1633.2020.10.031

[文章编号]1674-1633(2020)10-0139-05

收稿日期:2020-09-01

基金项目:内蒙古自治区科技计划项目(2019GG047)。

通信作者:高阳,主任医师,主要研究方向为中枢神经系统疾病。

通信作者邮箱:1390903990@qq.com

本文编辑 皮志超